On $\tau_1\tau_2$-g-Open Sets in Bitopological Spaces

K. Vithyasangaran1, P. Elango1, S. Sathaananthan1, J. Sriranganesan1 and P. Paramadevan1

1Department of Mathematics, Faculty of Science, Eastern University, Sri Lanka.

Authors’ contributions
This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information
DOI: 10.9734/JAMCS/2019/v34i230216

Editor(s):
(1) Dr. Doina Bein, Assistant Professor, Department of Computer Science, California State University, USA.
(2) Dr. Drago-Ptru Covei, Department of Applied Mathematics, The Bucharest University of Economic Studies, Piata Romana, 1st District, Postal Code: 010374, Postal Office: 22, Romania.

Reviewers:
(1) G. Srinivasarao, Tirumala Engineering College, India.
(2) Francisco Bulnes, Tecnolgico de Estudios Superiores de Chalco, Mexico.
(3) Josimar da Silva Rocha, Federal University of Technology - Paran (Universidade Tecnolgica Federal do Paran), Brazil.

Complete Peer review History: http://www.sdiarticle4.com/review-history/52351

Received: 21 August 2019
Accepted: 25 October 2019
Published: 26 October 2019

Abstract
In this paper, we introduced and studied a new kind of generalized open set called $\tau_1\tau_2$-g-open set in a bitopological space (X, τ_1, τ_2). The properties of this $\tau_1\tau_2$-g-open set are studied and compared with some of the corresponding generalized open sets in general topological spaces and bitopological spaces. We also defined the $\tau_1\tau_2$-g-continuous function and studied some its properties.

Keywords: Generalized open sets; bitopological spaces; continuous maps.

2010 Mathematics Subject Classification: 54A05, 54C10.

*Corresponding author: E-mail: vithyasangarank@esn.ac.lk;
1 Introduction

A space X equipped with two arbitrary topologies τ_1 and τ_2 is defined by J. C. Kelley [1] as the bitopological space in 1963 and denoted it by a triple (X, τ_1, τ_2) to generalize a topological space (X, τ). Every bitopological space (X, τ_1, τ_2) can be regarded as a topological space (X, τ) if $\tau_1 = \tau_2 = \tau$. A topological space occurs for every metric spaces but the bitopological spaces occurs for quasi-metric spaces. A subset A of a bitopological space (X, τ_1, τ_2) is called open if A is both τ_1-open and τ_2-open. In mathematics, and more specifically in topology, an open set is an abstract concept generalizing the idea of an open interval in the real line. The open sets play some role in properties of topological spaces such as once a choice of open sets is made, the properties of continuity, connectedness, and compactness, which use notions of nearness, can be defined using these open sets. The different forms of open sets were studied in past few years. Levine [2] defined that the complement of g-closed set is a g-open set in 1970. A. Csaszar extended a significant contribution to the theory of generalized open sets recently. There were many different kind of generalized open sets on topological spaces and on bitopological spaces introduced by different authors. As an example, Bhattacharyya and Lahiri [3], Maki, Devi and Balachandran [4] and Keskin and Noiri [5] have introduced and studied sg-open sets, $g\alpha$-open sets and bg-open sets. In this paper, we introduce another kind of generalized open set in the bitopological space and compare this with some of the corresponding generalized open sets and then analyzed its properties.

2 Preliminaries

Throughout this paper, we represent X and Y as the bitopological spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) on which no separation axioms are assumed unless otherwise stated. For a subset of A of X, τ_i-$\text{cl}(A)$ denotes the closure of A and τ_i-$\text{int}(A)$ denotes the interior of A, respectively with respective to the topology τ_i.

In the topological space (X, τ), we recall the following closed sets.

Definition 2.1. A subset A of a topological space (X, τ) is called a

1. **regular closed** [6] if $A \subseteq \text{cl}(\text{int}(A))$.
2. **ω-closed** [7] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in τ.
3. **semi closed** [8] if $\text{int}(\text{cl}(A)) \subseteq A$.
4. **α-closed** [9] if $\text{cl}(\text{int}(\text{cl}(A))) \subseteq A$.

The complements of the above mentioned closed sets are their respective open sets.

The semi interior (respectively, α-interior, semi pre interior, δ-interior and $b\delta$-interior) of a subset A of a space (X, τ) is the union of all semi open (respectively, α-open, semi pre open, δ-open and $b\delta$-open) sets contained in A and is denoted by $\text{sint}(A)$ (respectively, $\alpha\text{int}(A)$, $\text{spint}(A)$, $\text{int}_\delta(A)$ and $\text{b}\delta\text{int}(A)$).

We also recall some generalized closed sets defined in a topological space (X, τ).

Definition 2.2. A subset A of a topological space (X, τ) is called a

1. **g-closed** [2] (generalized closed) if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in τ.
2. **$\tau_1 \tau_2$-g-closed** [10] if τ_i-$\text{cl}(A) \subseteq U_i$ whenever $A \subseteq U_i$ and U_i is τ_i-open for each $i = 1, 2$.
3. **gs-g-closed** [11] (generalized semi closed) if $\text{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in τ.

2
4. \(r\)-\(g\)-closed [12] (regular generalized closed) if \(cl(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is a regular open in \(\tau\).

5. \(\alpha\)-\(g\)-closed [13] (generalized semi pre closed) if \(acl(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open in \(\tau\).

6. \(g\)-\(p\)-closed [14] (generalized semi closed) if \(pcl(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open in \(\tau\).

7. \(gsp\)-closed [15] (generalized semi pre closed) if \(spcl(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is regular open in \(\tau\).

8. \(rg\)-\(g\)-closed [16] (regular generalized \(b\) \(g\)-closed) if \(bgcl(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is a regular open in \(\tau\).

9. \(\delta\)-\(g\)-closed [17] if \(cl(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is a semi open in \(\tau\).

10. \(\delta\)-\(g\)-closed [18] if \(clf(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is a \(\delta\)-open in \(\tau\).

11. \((gsp)^{-}\)-closed [19] if \(cl(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is a \((gsp)^{-}\)-open in \(\tau\).

The complements of the above mentioned generalized closed sets are their respective generalized open sets.

Now we recall some generalized closed sets in a bitopological space \((X, \tau_1, \tau_2)\).

Definition 2.3. A subset \(A\) of a bitopological space \((X, \tau_1, \tau_2)\) is called a

1. \(\tau_1\tau_2\)-\(g\)-closed [20] (\(\tau_1\tau_2\)-generalized closed) if \(\tau_2\)-\(cl(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \(\tau_1\)-open.

2. \(\tau_1\tau_2\)-\(sg\)-closed [21] (\(\tau_1\tau_2\)-semi generalized closed) if \(\tau_2\)-\(scl(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \(\tau_1\)-semi open.

3. \(\tau_1\tau_2\)-\(gs\)-closed [22] (\(\tau_1\tau_2\)-generalized semi closed) if \(\tau_2\)-\(scl(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \(\tau_1\)-open.

4. \(\tau_1\tau_2\)-\(og\)-closed [23] (\(\tau_1\tau_2\)-\(\alpha\)-generalized closed) if \(\tau_2\)-\(acl(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \(\tau_1\)-open.

5. \(\tau_1\tau_2\)-\(oa\)-closed [23] (\(\tau_1\tau_2\)-generalized \(\alpha\)-closed) if \(\tau_2\)-\(ocl(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \(\tau_1\)-\(\alpha\)-open.

6. \(\tau_1\tau_2\)-\(\delta\)-closed [22] if \(\tau_2\)-\(cl(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \(\tau_1\)-\(\delta\)-open.

The complements of the above mentioned generalized closed sets in bitopological spaces are their respective generalized open sets in the corresponding bitopological spaces.

Definition 2.4. Let \(\tau_1\) and \(\tau_2\) be two topologies on a set \(X\) such that \(\tau_1\) is contained in \(\tau_2\). Then, the topology \(\tau_1\) is said to be a coarser (weaker or smaller) topology than \(\tau_2\).

3 Generalized \(\tau_1\tau_2\)-\(\delta\)-Open Sets

Definition 3.1. A subset \(A\) of a bitopological space \((X, \tau_1, \tau_2)\) is called a \(\tau_1\tau_2\)-\(\delta\)-open if \(F_i \subseteq \tau_i\)-\(int(A)\) whenever \(F_i \subseteq A\) and \(F_i\) is \(\tau_i\)-closed for each \(i = 1, 2\).

Example 3.2. Let \(X = \{a, b, c\}\), \(\tau_1 = \{\emptyset, \{a, b\}, X\}\), and \(\tau_2 = \{\emptyset, \{b\}, \{a, c\}, X\}\). Then, \(\emptyset, \{a\}, \{b\}, \{a, b\}\) and \(X\) are the \(\tau_1\tau_2\)-\(\delta\)-open sets in \((X, \tau_1, \tau_2)\).

Theorem 3.3. The intersection of two \(\tau_1\tau_2\)-\(\delta\)-open sets is a \(\tau_1\tau_2\)-\(\delta\)-open set.
Proof. Let A and B be two $\tau_1\tau_2\mathring{g}$-open sets. Then, $F_i \subseteq \tau_i \text{int}(A)$ whenever $F_i \subseteq A$ and F_i is τ_i-closed for each $i = 1, 2$ and $F_i \subseteq \tau_i \text{int}(B)$ whenever $F_i \subseteq A$ and F_i is τ_i-closed for each $i = 1, 2$. Then, we have $F_i \subseteq \tau_i \text{int}(A \cap B)$ whenever $F_i \subseteq (A \cap B)$ and F_i is τ_i-closed for each $i = 1, 2$. Therefore, $A \cap B$ is a $\tau_1\tau_2\mathring{g}$-open set.

The union of two $\tau_1\tau_2\mathring{g}$-open sets need not be a $\tau_1\tau_2\mathring{g}$-open set. This can be seen from the following example.

Example 3.4. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, \{a\}, X\}$, and $\tau_2 = \{\phi, \{b\}, X\}$. If $A = \{a\}$ and $B = \{c\}$, then the sets A and B are $\tau_1\tau_2\mathring{g}$-open; but, $A \cup B = \{a, c\}$ is not a $\tau_1\tau_2\mathring{g}$-open set.

Theorem 3.5. Every $\tau_1\tau_2\mathring{g}$-open set in (X, τ_1, τ_2) is a g-open set in both τ_1 and τ_2.

Proof. Let A be any $\tau_1\tau_2\mathring{g}$-open set in (X, τ_1, τ_2) and F_i be any closed set in (X, τ_i) contained in A for $i = 1, 2$ respectively. Then, $F_i \subseteq \tau_i \text{int}(A)$ whenever $F_i \subseteq A$ and F_i is closed in (X, τ_i) for $i = 1, 2$. Since $\tau_i \text{int}(A) \subseteq \tau_i \text{sint}(A)$, $F_i \subseteq \tau_i \text{sint}(A)$ whenever $F_i \subseteq A$ and F_i is closed in (X, τ_i) for $i = 1, 2$. Therefore, A is a g-open set in both τ_1 and τ_2.

The converse of the above theorem need not be true as seen from the following example.

Example 3.6. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{b\}, \{a, c\}, X\}$. Then, the set $\{c\}$ is a g-open set in both τ_1 and τ_2. But, it is not a $\tau_1\tau_2\mathring{g}$-open set in (X, τ_1, τ_2).

Theorem 3.7. Every $\tau_1\tau_2\mathring{g}$-open set in (X, τ_1, τ_2) is a regular generalized open set or rg-open set in both τ_1 and τ_2.

Proof. Let A be any $\tau_1\tau_2\mathring{g}$-open set in (X, τ_1, τ_2) and F_i be any regular closed set in (X, τ_i) contained in A for $i = 1, 2$ respectively. Since every regular closed set is a closed set, $F_i \subseteq \tau_i \text{int}(A)$ whenever $F_i \subseteq A$ and F_i is regular closed set in (X, τ_i) for $i = 1, 2$. Therefore, A is a rg-open set in both τ_1 and τ_2.

The converse of the above theorem need not be true as seen from the following example.

Example 3.8. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, \{a\}, \{b, c\}, \{b\}, X\}$, and $\tau_2 = \{\phi, \{a\}, \{b\}, \{a, c\}, \{a\}, X\}$. Then, the set $\{c\}$ is a regular generalized open set in both τ_1 and τ_2. But, it is not a $\tau_1\tau_2\mathring{g}$-open set.

Theorem 3.9. Every $\tau_1\tau_2\mathring{g}$-open set in (X, τ_1, τ_2) is a og-open set in both τ_1 and τ_2.

Proof. Let A be any $\tau_1\tau_2\mathring{g}$-open set in (X, τ_1, τ_2) and F_i be any closed set in (X, τ_i) contained in A for $i = 1, 2$ respectively. Then, $F_i \subseteq \tau_i \text{int}(A)$ whenever $F_i \subseteq A$ and F_i is closed in (X, τ_i) for $i = 1, 2$. Since $\tau_i \text{int}(A) \subseteq \tau_i \text{a int}(A)$, $F_i \subseteq \tau_i \text{a int}(A)$ whenever $F_i \subseteq A$ and F_i is closed in (X, τ_i) for $i = 1, 2$. Therefore, A is a og-open set in both τ_1 and τ_2.

The converse of the above theorem need not be true as seen from the following example.

Example 3.10. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, \{a\}, X\}$, and $\tau_2 = \{\phi, \{a, c\}, X\}$. Then, the set $\{b, c\}$ is a og-open set in both τ_1 and τ_2. But, it is not a $\tau_1\tau_2\mathring{g}$-open set.

Theorem 3.11. Every $\tau_1\tau_2\mathring{g}$-open set in (X, τ_1, τ_2) is a gp-open set in both τ_1 and τ_2.

Proof. Let A be any $\tau_1\tau_2\mathring{g}$-open set in (X, τ_1, τ_2) and F_i be any closed set in (X, τ_i) contained in A for $i = 1, 2$ respectively. Then, $F_i \subseteq \tau_i \text{int}(A)$ whenever $F_i \subseteq A$ and F_i is closed set in (X, τ_i) for $i = 1, 2$. Since $\tau_i \text{int}(A) \subseteq \tau_i \text{p int}(A)$, $F_i \subseteq \tau_i \text{p int}(A)$ whenever $F_i \subseteq A$ and F_i is closed set in (X, τ_i) for $i = 1, 2$. Therefore, A is a gp-open set in both τ_1 and τ_2.

\[\text{Vithyasingaran et al.; JAMCS, 34(2): 1-8, 2019; Article no.JAMCS.52351}\]
Let F be closed for $i \delta \tau$. Hence every $F \in \tau$ is regular closed for $i \delta \tau$. But, it is not a $\tau_1 \tau_2 \delta \tau$-open.

Theorem 3.13. Every $\tau_1 \tau_2 \delta \tau$-open set in (X, τ_1, τ_2) is a gsp-open set in both τ_1 and τ_2.

Proof. Let A be any $\tau_1 \tau_2 \delta \tau$-open set in (X, τ_1, τ_2) and F_i be any closed set in (X, τ_i) contained in A for $i = 1, 2$ respectively. Then, $F_i \subseteq \tau_i \text{int}(A)$ whenever $F_i \subseteq A$ and F_i is closed set in (X, τ_i) for $i = 1, 2$. Since $\tau_i \text{int}(A) \subseteq \tau_i \text{sp} \text{int}(A)$, $F_i \subseteq \tau_i \text{sp} \text{int}(A)$ whenever $F_i \subseteq A$ and F_i is closed set in (X, τ_i) for $i = 1, 2$. Therefore, A is a gsp-open set in both τ_1 and τ_2.

The converse of the above theorem need not be true as seen from the following example.

Example 3.14. Let $X = \{a, b, c\}; \tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{b\}, \{a\}, X\}$. Then, the set $\{b, c\}$ is a gsp-open set in both τ_1 and τ_2. But, it is not a $\tau_1 \tau_2 \delta \tau$-open.

Theorem 3.15. Every ω-open set in both τ_1 and τ_2 is a $\tau_1 \tau_2 \delta \tau$-open set.

Proof. Let A be ω-open set in both τ_1 and τ_2 and F_i be any closed set in τ_i contained in A for $i = 1, 2$ respectively. Then, $F_i \subseteq \text{int}(A)$ whenever $F_i \subseteq A$ and F_i is a semi closed set in τ_i for $i = 1, 2$. Since every semi closed set is a closed set, $F_i \subseteq \text{int}(A)$ whenever $F_i \subseteq A$ and F_i is a closed set in τ_i for $i = 1, 2$. Hence every ω-open set in both τ_1 and τ_2 is a $\tau_1 \tau_2 \delta \tau$-open set.

The converse of the above theorem need not be true as seen from the following example.

Example 3.16. Let $X = \{a, b, c\}; \tau_1 = \{\phi, \{a\}, X\}$; $\tau_2 = \{\phi, \{b\}, \{a\}, X\}$ and $A = \{a, b\}$. Hence the set A is a $\tau_1 \tau_2 \delta \tau$-open. But, it is not a ω-open set in τ_1 and τ_2.

Theorem 3.17. Every $\rho \delta$-open set in both τ_1 and τ_2 is a $\tau_1 \tau_2 \delta \tau$-open set.

Proof. Let A be $\rho \delta$-open set in both τ_1 and τ_2 and F_i be any closed set in τ_i contained in A for $i = 1, 2$ respectively. Then, $A = \text{int}(A)$ whenever $F_i \subseteq A$ and F_i is a regular closed in τ_i for $i = 1, 2$. So, $F_i \subseteq \text{int}(A)$ whenever $F_i \subseteq A$ and F_i is a closed in τ_i for $i = 1, 2$ as every regular closed set is closed. Hence every $\rho \delta$-open set in both τ_1 and τ_2 is a $\tau_1 \tau_2 \delta \tau$-open set.

The converse of the above theorem need not be true as seen from the following example.

Example 3.18. Let $X = \{a, b, c\}; \tau_1 = \{\phi, \{a\}, \{b, c\}, X\}$; $\tau_2 = \{\phi, \{c\}, \{b, c\}, X\}$ and $A = \{a, c\}$. Hence the set A is a $\tau_1 \tau_2 \delta \tau$-open. But, it is not a $\rho \delta$-open set in τ_1 and τ_2.

Theorem 3.19. If A is a $\tau_1 \tau_2 \delta \tau$-open set, then A is rgb^2-open set in both τ_1 and τ_2.

Proof. Let A be any $\tau_1 \tau_2 \delta \tau$-open set in X such that $F_i \subseteq A$ and F_i is regular closed of τ_i for $i = 1, 2$ respectively. Hence A is g-open set in (X, τ_1) and (X, τ_2) as every regular closed set is closed, F_i is closed for $i = 1, 2$. Also, $F_i \subseteq \tau_i \text{int}(A) \subseteq \tau_i \text{sp} \text{int}(A)$ for $i = 1, 2$. Therefore, $F_i \subseteq \tau_i \text{sp} \text{int}(A)$ and F_i is regular closed for $i = 1, 2$, Hence A is rgb^2-open set in τ_1 and τ_2.

The converse of the above theorem need not be true as seen from the following example.

Example 3.20. Let $X = \{a, b, c\}; \tau_1 = \{\phi, \{a\}, X\}$; $\tau_2 = \{\phi, \{b\}, \{a\}, X\}$ and $A = \{b, c\}$. Hence the set A is a rgb^2-open set in both τ_1 and τ_2. But, it is not a $\tau_1 \tau_2 \delta \tau$-open set.

Theorem 3.21. Every $\delta \tau$-open set in both τ_1 and τ_2 is a $\tau_1 \tau_2 \delta \tau$-open set.
Proof. Let \(A \) be an \(\delta g \)-open set in \(\tau_1 \) and \(\tau_2 \) and \(F_i \) is any closed set contained in \(A \) in \((X, \tau_i)\) for \(i = 1, 2 \), respectively. Since every closed set is \(g \)-closed and \(A \) is \(\delta g \)-open set in \(\tau_1 \) and \(\tau_2 \), \(F_i \subseteq \tau_i\text{-int}(A) \) for every subset \(A \) of \(X \) for \(i = 1, 2 \). Since \(F_i \subseteq \tau_i\text{-int}(A) \subseteq \tau_i\text{-int}(A) \), \(F_i \subseteq \tau_i\text{-int}(A) \), and hence \(A \) is \(g \)-open set in \(\tau_1 \) and \(\tau_2 \). Therefore, \(A \) is \(\tau_1\tau_2\text{-}\delta g \)-open set.

The converse of the above theorem need not be true as seen from the following example.

Example 3.22. Let \(X = \{a, b, c\}; \tau_1 = \{\phi, \{b\}, \{a, c\}, X\}; \tau_2 = \{\phi, \{c\}, \{a, b\}, X\} \) and \(A = \{b, c\} \). Hence the set \(A \) is a \(\tau_1\tau_2\text{-}\delta g \)-open. But, it is not a \(\delta g \)-open set in \(\tau_1 \) and \(\tau_2 \).

Theorem 3.23. Every \(\tau_1\tau_2\text{-}\delta g \)-open set is strongly \((gsp)^*\)-open set in both \(\tau_1 \) and \(\tau_2 \).

Proof. Let \(A \) be \(\tau_1\tau_2\text{-}\delta g \)-open set. Then, \(F_i \subseteq \tau_i\text{-int}(A) \) whenever \(F_i \subseteq A \) and \(F_i \) is closed in \(\tau_i \) for \(i = 1, 2 \) respectively. Now, let \(F_i \subseteq A \) and \(F_i \) be \((gsp)^*\)-open set in \(\tau_i \) for \(i = 1, 2 \) respectively. Since every closed set is a \((gsp)^*\)-closed set, we have \(F_i \subseteq \tau_i\text{-int}(A) \) whenever \(F_i \subseteq A \) and \(F_i \) is \((gsp)^*\)-closed in \(\tau_i \) for \(i = 1, 2 \). But, \(F_i \subseteq \tau_i\text{-int}(A) \subseteq \tau_i\text{-int(cl}(A)) \) whenever \(F_i \subseteq A \) and \(F_i \) is \((gsp)^*\)-closed in \(\tau_i \) for \(i = 1, 2 \). Hence \(F_i \subseteq \tau_i\text{-int(cl}(A)) \) whenever \(F_i \subseteq A \) and \(F_i \) is \((gsp)^*\)-closed in \((X, \tau_i)\) for \(i = 1, 2 \). Therefore, \(A \) is strongly \((gsp)^*\)-open set in \(\tau_1 \) and \(\tau_2 \).

The converse of the above theorem need not be true as seen from the following example.

Example 3.24. Let \(X = \{a, b, c\}; \tau_1 = \{\phi, \{a\}, \{a, b\}, X\}; \tau_2 = \{\phi, \{c\}, \{b, c\}, X\} \) and \(A = \{a, c\} \). Hence the set \(A \) is a strongly \((gsp)^*\)-open set in \(\tau_1 \) and \(\tau_2 \). But, it is not a \(\tau_1\tau_2\text{-}\delta g \)-open.

Theorem 3.25. If \(\tau_1 \) is coarser than \(\tau_2 \), then every \(\tau_1\tau_2\text{-}\delta g \)-open set is a \(\tau_1\tau_2\text{-}g \)-open set.

Proof. Let \(A \) be \(\tau_1\tau_2\text{-}g \)-open set. Then, \(F_i \subseteq \tau_i\text{-int}(A) \) whenever \(F_i \subseteq A \) and \(F_i \) is \(\tau_i \)-closed for each \(i = 1, 2 \). Since \(\tau_1 \) is coarser than \(\tau_2 \), we have \(F \subseteq \tau_2\text{-int}(A) \), whenever \(F \subseteq A \), \(F \) is \(\tau_1 \)-closed. Hence \(A \) is a \(\tau_1\tau_2\text{-}g \)-open set.

Theorem 3.26. If \(\tau_1 \) is coarser than \(\tau_2 \), then every \(\tau_1\tau_2\text{-}\delta g \)-open set is a \(\tau_1\tau_2\text{-}g \)-open set.

Proof. Let \(A \) be \(\tau_1\tau_2\text{-}\delta g \)-open set. Then, \(F_i \subseteq \tau_i\text{-int}(A) \) whenever \(F_i \subseteq A \) and \(F_i \) is \(\tau_i \)-closed for each \(i = 1, 2 \). Since every closed set is semi-closed, \(F_i \) is \(\tau_i \)-semi closed. Therefore, \(F_i \subseteq \tau_i\text{-int}(A) \), whenever \(F_i \subseteq A \), \(F_i \) is \(\tau_i \)-semi closed. Since \(\tau_1 \) is coarser than \(\tau_2 \), \(F_i \subseteq \tau_2\text{-int}(A) \), whenever \(F_i \subseteq A \), \(F_i \) is \(\tau_1 \)-semi closed. Hence \(A \) is a \(\tau_1\tau_2\text{-}g \)-open set.

Theorem 3.27. If \(\tau_1 \) is coarser than \(\tau_2 \), then every \(\tau_1\tau_2\text{-}\delta g \)-open set is a \(\tau_1\tau_2\text{-}g \)-open set.

Proof. Let \(A \) be \(\tau_1\tau_2\text{-}\delta g \)-open set. Then, \(F_i \subseteq \tau_i\text{-int}(A) \) whenever \(F_i \subseteq A \) and \(F_i \) is \(\tau_i \)-closed for each \(i = 1, 2 \). Therefore, \(F_i \subseteq \tau_i\text{-int}(A) \), whenever \(F_i \subseteq A \), \(F_i \) is \(\tau_1 \)-closed. Since \(\tau_1 \) is coarser than \(\tau_2 \), \(F_i \subseteq \tau_2\text{-int}(A) \), whenever \(F_i \subseteq A \), \(F_i \) is \(\tau_1 \)-closed. Hence \(A \) is a \(\tau_1\tau_2\text{-}g \)-open set.

Theorem 3.28. If \(\tau_1 \) is coarser than \(\tau_2 \), then every \(\tau_1\tau_2\text{-}\delta g \)-open set is a \(\tau_1\tau_2\text{-}g \)-open set.

Proof. Let \(A \) be \(\tau_1\tau_2\text{-}\delta g \)-open set. Then, \(F_i \subseteq \tau_i\text{-int}(A) \) whenever \(F_i \subseteq A \) and \(F_i \) is \(\tau_i \)-closed for each \(i = 1, 2 \). Therefore, \(F_i \subseteq \tau_1\alpha \text{int}(A) \), whenever \(F_i \subseteq A \). Since \(\tau_1 \) is coarser than \(\tau_2 \), \(F_i \subseteq \tau_2\alpha \text{int}(A) \), whenever \(F_i \subseteq A \), \(F_i \) is \(\tau_1 \)-closed. Hence \(A \) is a \(\tau_1\tau_2\text{-}g \)-open set.

Theorem 3.29. If \(\tau_1 \) is coarser than \(\tau_2 \), then every \(\tau_1\tau_2\text{-}\delta g \)-open set is a \(\tau_1\tau_2\text{-}g \)-open set.

6
Proof. Let \(A\) be \(\tau_1\tau_2-\bar{g}\)-open set. Then, \(F_i \subseteq \tau_i\)-int(\(A\)) whenever \(F_i \subseteq A\) and \(F_i\) is \(\tau_i\)-closed for each \(i = 1, 2\). Therefore, \(F_i \subseteq \tau_1\)-int(\(A\)) whenever \(F_i \subseteq A\), \(F_i\) is \(\tau_1\)-closed as every closed set is \(\alpha\)-closed. Since \(\tau_1\) is coarser than \(\tau_2\), \(\tau_2\)-\(\bar{F}_1\) \(\subseteq \alpha\)-int(\(A\)), whenever \(F_1 \subseteq A\), \(F_1\) is \(\tau_1\)-\(\alpha\)-closed. Hence \(A\) is a \(\tau_1\tau_2\)-\(\alpha\)-open set.

\(\square\)

Theorem 3.30. If \(\tau_1\) is coarser than \(\tau_2\), then every \(\tau_1\tau_2\)-\(\bar{g}\)-open set is a \(\tau_1\tau_2\)-\(\bar{g}\)-open set.

Proof. Let \(A\) be \(\tau_1\tau_2\)-\(\bar{g}\)-open set. Then, \(F_1 \subseteq \tau_1\)-int(\(A\)), \(F_1\) is \(\tau_1\)-closed. Since every closed set is semi closed, \(F_1 \subseteq \tau_1\)-int(\(A\)), whenever \(F_1 \subseteq A\), \(F_1\) is \(\tau_1\)-semi closed. Since \(\tau_1\) is coarser than \(\tau_2\), \(F_1 \subseteq \tau_2\)-int(\(A\)), whenever \(F_1 \subseteq A\), \(F_1\) is \(\tau_1\)-semi closed. Hence \(A\) is a \(\tau_1\tau_2\)-\(\bar{g}\)-open set.

\(\square\)

Definition 3.31. A function \(f\) from spaces \((X, \tau_1, \tau_2)\) into \((Y, \sigma_1, \sigma_2)\) is called \(\tau_1\tau_2 - \bar{g}\)-continuous if \(f^{-1}(V)\) is \(\tau_1\tau_2 - \bar{g}\)-open set in \(X\) for each \(\sigma_1\)-open set \(V\) in \(Y\).

Example 3.32. Let \(X = \{a, b, c\} = Y; \tau_1 = \{\phi, \{a, b\}, X\}; \tau_2 = \{\phi, \{b\}, \{a, c\}, X\}; \sigma_1 = \{\phi, Y\}\) and \(\sigma_2 = \{\phi, \{b\}, Y\}\). Then \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)\) defined by \(f(a) = a\) is \(\tau_1\tau_2 - \bar{g}\)-continuous mapping.

Theorem 3.33. If \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)\) is \(\tau_1\tau_2 - \bar{g}\)-continuous and \(g : (Y, \sigma_1, \sigma_2) \rightarrow (Z, \rho_1, \rho_2)\) is continuous, then \(g \circ f\) is \(\tau_1\tau_2 - \bar{g}\)-continuous.

Proof. Let \(A\) be \(\rho_1\)-open set in \(Z\). Since \(g\) is continuous, \(g^{-1}(A)\) is \(\sigma_1\)-open in \(Y\). Since \(f\) is \(\tau_1\tau_2\)-\(\bar{g}\)-continuous, \(f^{-1}(g^{-1}(A))\) is \(\tau_1\tau_2\)-\(\bar{g}\)-open in \(X\). Hence \(g \circ f\) is \(\tau_1\tau_2\)-\(\bar{g}\)-continuous. \(\square\)

4 Conclusion

In this paper, \(\tau_1\tau_2\)-\(\bar{g}\)-open sets were introduced in the bitopological spaces and their properties were studied. Further, their properties were compared with some of the corresponding generalized open sets in the general topological spaces and bitopological spaces.

Competing Interests

Authors have declared that no competing interests exist.

References

[22] Indira T. $\tau_1\tau_2$-\tilde{g}-closed sets in Bitopological spaces. Annals of Pure and Applied mathematics. 2014;7(2):27-34.

©2019 Vithyasangaran et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
http://www.sdiarticle4.com/review-history/52351