Linear Summing Formulas of Generalized Pentanacci and Gaussian Generalized Pentanacci Numbers

Yüksel Soykan

1Department of Mathematics, Art and Science Faculty, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Turkey.

Author’s contribution
The sole author designed, analyzed, interpreted and prepared the manuscript.

Article Information
DOI: 10.9734/JAMCS/2019/v33i330176

Editor(s):
(1) Dr. Dariusz Jakbczak Assistant Professor Chair of Computer Science and Management in this department Technical University of Koszalin, Poland.

Reviewers:
(1) Nalini V. Vaidya, College of Engineering Nagpur, India.
(2) Fevzi Yaşar, Gaziantep University, Turkey.

Complete Peer review History: http://www.sdiarticle3.com/review-history/50266

Received: 06 May 2019
Accepted: 16 July 2019
Published: 22 July 2019

Original Research Article

Abstract

In this paper, we present linear summation formulas for generalized Pentanacci numbers and generalized Gaussian Pentanacci numbers. Also, as special cases, we give linear summation formulas of Pentanacci and Pentanacci-Lucas numbers; Gaussian Pentanacci and Gaussian Pentanacci-Lucas numbers. We present the proofs to indicate how these formulas, in general, were discovered. Of course, all the listed formulas may be proved by induction, but that method of proof gives no clue about their discovery.

Keywords: Pentanacci numbers, Pentanacci-Lucas numbers, Gaussian Pentanacci numbers, Gaussian Pentanacci-Lucas numbers.

2010 Mathematics Subject Classification: 11B37, 11B39, 11B83.

*Corresponding author: E-mail: yukselsoykan@hotmail.com;
1 Introduction and Preliminaries

In this work, we investigate linear summation formulas of generalized Pentanacci numbers and generalized Gaussian Pentanacci numbers. First, in this section, we present some background about generalized Pentanacci numbers.

There have been so many studies of the sequences of numbers in the literature which are defined recursively. Two of these type of sequences are the sequences of Pentanacci and Pentanacci-Lucas which are special case of generalized Pentanacci numbers. A generalized Pentanacci sequence \(\{V_n\}_{n \geq 0} \) is defined by the fifth-order recurrence relations

\[
V_n = V_{n-1} + V_{n-2} + V_{n-3} + V_{n-4} + V_{n-5},
\]

with the initial values \(V_0 = c_0, V_1 = c_1, V_2 = c_2, V_3 = c_3, V_4 = c_4 \) not all being zero.

The sequence \(\{V_n\}_{n \geq 0} \) can be extended to negative subscripts by defining

\[
V_{-n} = -V_{-(n-1)} - V_{-(n-2)} - V_{-(n-3)} - V_{-(n-4)} + V_{-(n-5)}
\]

for \(n = 1, 2, 3, \ldots \). Therefore, recurrence (1.1) holds for all integer \(n \). Pentanacci sequence has been studied by many authors, see for example [1], [2], [3], [4].

The first few generalized Pentanacci numbers with positive subscript and negative subscript are given in the following Table 1:

<table>
<thead>
<tr>
<th>(\ n)</th>
<th>(V_n)</th>
<th>(V_{-n})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(c_0)</td>
<td>(c_0)</td>
</tr>
<tr>
<td>1</td>
<td>(c_1)</td>
<td>(-c_0 - c_1 - c_2 - c_3 + c_4)</td>
</tr>
<tr>
<td>2</td>
<td>(c_2)</td>
<td>(2c_3 - c_4)</td>
</tr>
<tr>
<td>3</td>
<td>(c_3)</td>
<td>(2c_2 - c_3)</td>
</tr>
<tr>
<td>4</td>
<td>(c_4)</td>
<td>(2c_1 - c_2)</td>
</tr>
<tr>
<td>5</td>
<td>(c_0 + c_1 + c_2 + c_3 + c_4)</td>
<td>(2c_0 - c_1)</td>
</tr>
<tr>
<td>6</td>
<td>(c_0 + 2c_1 + 2c_2 + 2c_3 + 2c_4)</td>
<td>(-3c_0 - 2c_1 - 2c_2 - 2c_3 + 2c_4)</td>
</tr>
<tr>
<td>7</td>
<td>(2c_0 + 3c_1 + 3c_2 + 3c_3 + 3c_4)</td>
<td>(c_0 + c_1 + 2c_2 + 2c_3 - 3c_4)</td>
</tr>
<tr>
<td>8</td>
<td>(4c_0 + 6c_1 + 6c_2 + 6c_3 + 6c_4)</td>
<td>(4c_2 - 4c_3 + c_4)</td>
</tr>
<tr>
<td>9</td>
<td>(8c_0 + 12c_1 + 12c_2 + 12c_3 + 12c_4)</td>
<td>(4c_1 - 4c_2 + c_3)</td>
</tr>
<tr>
<td>10</td>
<td>(16c_0 + 24c_1 + 24c_2 + 24c_3 + 24c_4)</td>
<td>(4c_0 - 4c_1 + c_2)</td>
</tr>
</tbody>
</table>

We consider two special cases of \(\{V_n\}_{n \geq 0} \). Pentanacci sequence \(\{P_n\}_{n \geq 0} \) and Pentanacci-Lucas sequence \(\{Q_n\}_{n \geq 0} \) are defined by the fifth-order recurrence relations

\[
P_n = P_{n-1} + P_{n-2} + P_{n-3} + P_{n-4} + P_{n-5}, \quad P_0 = 0, P_1 = 1, P_2 = 1, P_3 = 2, P_4 = 4 \quad (1.2)
\]

and

\[
Q_n = Q_{n-1} + Q_{n-2} + Q_{n-3} + Q_{n-4} + Q_{n-5}, \quad Q_0 = 5, Q_1 = 1, Q_2 = 3, Q_3 = 7, Q_4 = 15 \quad (1.3)
\]

respectively. Note that \(P_n \) is the sequence A001591 in [5] and \(Q_n \) is the sequence A001650 in [5].

Next, we present the first few values of the Pentanacci and Pentanacci-Lucas numbers with positive and negative subscripts in the following Table 2:
Table 2. A few Pentanacci and Pentanacci-Lucas Numbers

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_n</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
</tr>
<tr>
<td>Q_n</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

2 Linear Sums of Generalized Pentanacci Numbers

Some summing formulas of the Pell and Pell-Lucas numbers are well known and given in [6, 7], see also [8]. For linear sums of Tribonacci and Tetranacci numbers, see [9] and [10, 11], respectively. The following theorem presents some summation formulas of generalized Pentanacci numbers.

THEOREM 2.1 For $n \geq 0$, we have the following linear sum identities:

(a) $\sum_{k=0}^{n} V_k = \frac{1}{4}(V_{n+4} - V_{n+2} - 2V_{n+1} + V_n + V_4 + V_2 + 2V_1 + 3V_0)$

(b) $\sum_{k=0}^{n} V_{2k+1} = \frac{1}{2}(3V_{n+2} + 4V_{n+1} + V_n + 2V_{n-1} - V_{n-2} - 2V_{n-3} + 3V_{n-4} - 4V_{n-5} - 5V_{n-6})$

(c) $\sum_{k=0}^{n} V_{2k} = \frac{1}{4}(-V_{n+3} + V_{n+2} + 2V_{n+1} + 3V_n + 2V_{n-1} - V_{n-2} - 2V_{n-3} - V_{n-4} + 4V_{n-5} + 5V_{n-6})$

(d) $\sum_{k=0}^{n} V_{3k+1} = \frac{1}{3}(V_{n+4} + V_{n+3} - V_{n+2} - V_{n+1} - V_n - V_{n-1} - V_{n-2} + 2V_{n-3} - 2V_{n-4} + V_{n-5} - V_{n-6})$

(e) $\sum_{k=0}^{n} V_{3k+2} = \frac{1}{6}(V_{n+5} + V_{n+4} + V_{n+3} + V_{n+2} + V_{n+1} + V_n - V_{n-1} - V_{n-2} + 2V_{n-3} - 2V_{n-4} + 2V_{n-5} - V_{n-6})$

(f) $\sum_{k=0}^{n} V_{3k+3} = \frac{1}{2}(7V_{n+4} + 4V_{n+3} + 3V_{n+2} + 2V_{n+1} + V_n - 2V_{n-1} - V_{n-2} + 2V_{n-3} - 3V_{n-4} - 4V_{n-5} - 5V_{n-6})$

(g) $\sum_{k=0}^{n} V_{4k} = \frac{1}{10}(-5V_{n+4} + 4V_{n+3} + 9V_{n+2} + 10V_{n+1} + 7V_n + 5V_{n-1} + 4V_{n-2} - 9V_{n-3} + 9V_{n-4} - 10V_{n-5} + 9V_{n-6})$

(h) $\sum_{k=0}^{n} V_{4k+1} = \frac{1}{10}(-V_{n+4} + 4V_{n+3} + 5V_{n+2} + 2V_{n+1} - 5V_n + 4V_{n-1} - 4V_{n-2} - 5V_{n-3} + 4V_{n-4} + 3V_{n-5} + 5V_{n-6})$

(i) $\sum_{k=0}^{n} V_{4k+2} = \frac{1}{10}(3V_{n+4} + 4V_{n+3} + 6V_{n+2} + 4V_{n+1} + V_n - 3V_{n-1} - V_{n-2} + 3V_{n-3} + 15V_{n-4} + 6V_{n-5} + 5V_{n-6})$

(j) $\sum_{k=0}^{n} V_{4k+3} = \frac{1}{10}(7V_{n+4} + 4V_{n+3} - 3V_{n+2} + 2V_{n+1} + 3V_n - 7V_{n-1} + 12V_{n-2} - 3V_{n-3} + 3V_{n-4} - 4V_{n-5} - 5V_{n-6})$

(k) $\sum_{k=0}^{n} V_{4k+4} = \frac{1}{10}(-3V_{n+5} + 4V_{n+4} + 3V_{n+3} + 2V_{n+2} + 5V_{n+1} - V_n + V_{n-1} - 4 + 2V_{n-2} + 2V_{n-3} + 7V_{n-4})$

(l) $\sum_{k=0}^{n} V_{4k+5} = \frac{1}{10}(V_{n+6} - V_{n+3} - 2V_{n+2} + 3V_{n+1} - V_n + V_{n-1} - V_{n-2} + 6V_{n-3} + 15V_{n-4} + 6V_{n-5} + 5V_{n-6})$

(m) $\sum_{k=0}^{n} V_{4k+6} = \frac{1}{10}(V_{n+7} - V_{n+4} + 2V_{n+3} - 2V_{n+2} + 5V_{n+1} - V_n + 4V_{n-1} + V_{n-2} - 5V_{n-3} + 3V_{n-4} + 2V_{n-5} + 2V_{n-6})$

(n) $\sum_{k=0}^{n} V_{4k+7} = \frac{1}{10}(V_{n+8} - V_{n+5} + 2V_{n+4} + 2V_{n+3} - V_n + 4V_{n-1} - 2V_{n-2} + 3V_{n-3} + 2V_{n-4} - 3V_{n-5} - 2V_{n-6})$

(o) $\sum_{k=0}^{n} V_{4k+8} = \frac{1}{10}(V_{n+9} + 3V_{n+6} + 2V_{n+5} + 2V_{n+4} + 3V_{n+3} - 4V_{n+2} - 3V_{n+1} + 2V_{n-2} - 2V_{n-3} - 2V_{n-4} - 2V_{n-5})$

Proof.

(a) Using the recurrence relation $V_n = V_{n-1} + V_{n-2} + V_{n-3} + V_{n-4} + V_{n-5}$

i.e. $V_n - V_{n-1} = V_{n-2} + V_{n-3} + V_{n-4} + V_{n-5} = V_{n-5} + V_{n-4} + V_{n-3} + V_{n-2}$
we obtain

\[\begin{align*}
V_5 - V_4 &= V_0 + V_1 + V_2 + V_3 \\
V_6 - V_5 &= V_1 + V_2 + V_3 + V_4 \\
V_7 - V_6 &= V_2 + V_3 + V_4 + V_5 \\
V_8 - V_7 &= V_3 + V_4 + V_5 + V_6 \\
V_9 - V_8 &= V_4 + V_5 + V_6 + V_7 \\
& \vdots \\
V_{n} - V_{n-1} &= V_{n-5} + V_{n-4} + V_{n-3} + V_{n-2} \\
V_{n+1} - V_{n} &= V_{n-4} + V_{n-3} + V_{n-2} + V_{n-1} \\
V_{n+2} - V_{n+1} &= V_{n-3} + V_{n-2} + V_{n-1} + V_{n} \\
V_{n+3} - V_{n+2} &= V_{n-2} + V_{n-1} + V_{n} + V_{n+1} \\
V_{n+4} - V_{n+3} &= V_{n-1} + V_{n} + V_{n+1} + V_{n+2} \\
V_{n+5} - V_{n+4} &= V_{n} + V_{n+1} + V_{n+2} + V_{n+3}
\end{align*} \]

If we add the equations by side by side, we get

\[V_{n+5} - V_4 = \sum_{k=0}^{n} V_k + (V_{n+1} - V_0 + \sum_{k=0}^{n} V_k) + (V_{n+2} + V_{n+1} - V_1 - V_0 + \sum_{k=0}^{n} V_k) + (V_{n+3} + V_{n+2} + V_{n+1} - V_2 - V_1 - V_0 + \sum_{k=0}^{n} V_k) \]

or

\[4 \sum_{k=0}^{n} V_k = V_{n+5} - V_4 - 2V_{n+2} - 3V_{n+1} - V_0 + V_2 + 2V_1 + 3V_0 \]

which maybe reduced easily to (a) by using (1.1) and dividing both sides by 4. Note that

\[V_{n+5} - V_{n+3} - 2V_{n+2} - 3V_{n+1} = (V_{n+4} + V_{n+3} + V_{n+2} + V_{n+1} + V_{n}) - V_{n+3} - 2V_{n+2} - 3V_{n+1} = V_{n+4} - V_{n+2} - 2V_{n+1} + V_{n} \]

(b),(c) We write the following obvious equations;

\[\begin{align*}
V_3 &= V_4 - V_2 - V_1 - V_0 - V_{-1} \\
V_5 &= V_6 - V_4 - V_3 - V_2 - V_1 \\
V_7 &= V_8 - V_6 - V_5 - V_4 - V_3 \\
V_9 &= V_{10} - V_8 - V_7 - V_5 - V_4 \\
V_{11} &= V_{12} - V_{10} - V_9 - V_8 - V_7 \\
V_{13} &= V_{14} - V_{12} - V_{11} - V_{10} - V_9 \\
V_{15} &= V_{16} - V_{14} - V_{13} - V_{12} - V_{11} \\
& \vdots \\
V_{2n-1} &= V_{2n} - V_{2n-2} - V_{2n-3} - V_{2n-4} - V_{2n-5} \\
V_{2n+1} &= V_{2n+2} - V_{2n} - V_{2n-1} - V_{2n-2} - V_{2n-3}
\end{align*} \]
Now, adding these equations we have

\[-V_1 + \sum_{k=0}^{n} V_{2k+1} = \left(-V_0 - V_2 + V_{2n+2} + \sum_{k=0}^{n} V_{2k} \right) + \left(V_0 - \sum_{k=0}^{n} V_{2k} \right) + \left(V_{2n+1} - \sum_{k=0}^{n} V_{2k+1} \right) + \left(V_{2n} - \sum_{k=0}^{n} V_{2h} \right) + \left(V_{2n+1} + V_{2n-1} - V_{-1} - \sum_{k=0}^{n} V_{2k+1} \right)\]

or

\[3 \sum_{k=0}^{n} V_{2k+1} = V_1 - V_{-1} - V_2 + V_{2n+2} + 2V_{2n+1} + V_{2n} + V_{2n-1} - \sum_{k=0}^{n} V_{2k}\]

or using \(V_{-1} = V_4 - V_3 - V_2 - V_1 - V_0\),

\[3 \sum_{k=0}^{n} V_{2k+1} = -V_4 + V_3 + 2V_1 + V_0 + V_{2n+2} + 2V_{2n+1} + V_{2n} + V_{2n-1} - \sum_{k=0}^{n} V_{2k}\]

Note that

\[V_1 - V_{-1} - V_2 = V_1 - (V_4 - V_3 - V_2 - V_1 - V_0) - V_2 = -V_4 + V_3 + 2V_1 + V_0\]

Similarly, we write the following obvious equations;

\[
\begin{align*}
V_2 &= V_3 - V_1 - V_0 - V_{-1} - V_{-2} \\
V_4 &= V_5 - V_3 - V_2 - V_1 - V_0 \\
V_6 &= V_7 - V_5 - V_4 - V_3 - V_2 \\
V_8 &= V_9 - V_7 - V_6 - V_5 - V_4 \\
V_{10} &= V_{11} - V_9 - V_8 - V_7 - V_6 \\
V_{12} &= V_{13} - V_{11} - V_{10} - V_9 - V_8 \\
V_{14} &= V_{15} - V_{13} - V_{12} - V_{11} - V_{10} \\
&\vdots \\
V_{2n-2} &= V_{2n-1} - V_{2n-3} - V_{2n-4} - V_{2n-5} - V_{2n-6} \\
V_{2n} &= V_{2n+1} - V_{2n-1} - V_{2n-2} - V_{2n-3} - V_{2n-4}.
\end{align*}
\]

Now, adding these equations, we have

\[-V_0 + \sum_{k=0}^{n} V_{2k} = \left(-V_1 + \sum_{k=0}^{n} V_{2k+1} \right) + \left(V_{2n+1} - \sum_{k=0}^{n} V_{2k+1} \right) + \left(V_{2n} - \sum_{k=0}^{n} V_{2k} \right) + \left(V_{2n+1} + V_{2n-1} - V_{-1} - \sum_{k=0}^{n} V_{2k+1} \right) + \left(V_{2n-2} + V_{2n} - V_{-2} - \sum_{k=0}^{n} V_{2k} \right)\]

or

\[3 \sum_{k=0}^{n} V_{2k} = \left(-V_2 - V_{-1} + V_0 - V_1 \right) + 2V_{2n+1} + 2V_{2n} + V_{2n-1} + V_{2n-2} - \sum_{k=0}^{n} V_{2k+1}\]

or using \(V_{-2} = V_5 - V_2 - V_1 - V_0 - V_{-1}\),

\[3 \sum_{k=0}^{n} V_{2k} = -V_3 + V_2 + 2V_0 + 2V_{2n+1} + 2V_{2n} + V_{2n-1} + V_{2n-2} - \sum_{k=0}^{n} V_{2k+1}.
\]
Note that
\[-V_{-2} - V_{-1} + V_0 - V_1 = -(V_3 - V_2 - V_1 - V_0 - V_{-1}) - V_{-1} + V_0 - V_1 = -V_3 + V_2 + 2V_0.\]
Solving the following system
\[3 \sum_{k=0}^{n} V_{2k+1} = -V_4 + V_3 + 2V_1 + V_0 + V_{2n+2} + 2V_{2n+1} + V_{2n} + V_{2n-1} - \sum_{k=0}^{n} V_{2k},\]
\[3 \sum_{k=0}^{n} V_{2k} = -V_5 + V_2 + 2V_0 + 2V_{2n+1} + 2V_{2n} + V_{2n-1} + V_{2n-2} - \sum_{k=0}^{n} V_{2k+1},\]
we find that
\[\sum_{k=0}^{n} V_{2k+1} = \frac{1}{8}(3V_{2n+2} + 4V_{2n+1} + V_{2n} + 2V_{2n-1} - V_{2n-2} + V_0 + 6V_1 - V_2 + 4V_3 - 3V_4)\]
\[\sum_{k=0}^{n} V_{2k} = \frac{1}{8}(-V_{2n+2} + 4V_{2n+1} + 5V_{2n} + 2V_{2n-1} + 3V_{2n-2} + V_4 - 4V_3 + 3V_2 - 2V_1 + 5V_0).\]
\[(d),(e),(f)\] Using the recurrence relation
\[V_k = V_{k-1} + V_{k-2} + V_{k-3} + V_{k-4} + V_{k-5}\]
i.e.
\[V_{k-1} = V_k - V_{k-2} - V_{k-3} - V_{k-4} - V_{k-5}\]
we write the obvious equations
\[V_0 = V_1 - V_{-1} - V_{-2} - V_{-3} - V_{-4}\]
\[V_3 = V_4 - V_2 - V_1 - V_0 - V_{-1}\]
\[V_6 = V_7 - V_5 - V_4 - V_3 - V_2\]
\[V_9 = V_{10} - V_8 - V_7 - V_6 - V_5\]
\[V_{12} = V_{13} - V_{11} - V_{10} - V_9 - V_8\]
\[V_{15} = V_{16} - V_{14} - V_{13} - V_{12} - V_{11}\]
\[V_{18} = V_{19} - V_{17} - V_{16} - V_{15} - V_{14}\]
\[V_{21} = V_{22} - V_{20} - V_{19} - V_{18} - V_{17}\]
\[V_{24} = V_{25} - V_{23} - V_{22} - V_{21} - V_{20}\]
\[V_{27} = V_{28} - V_{26} - V_{25} - V_{24} - V_{23}\]
\[\vdots\]
\[V_{3n-6} = V_{3n-5} - V_{3n-7} - V_{3n-8} - V_{3n-9} - V_{3n-10}\]
\[V_{3n-3} = V_{3n-2} - V_{3n-4} - V_{3n-5} - V_{3n-6} - V_{3n-7}\]
\[V_{3n} = V_{3n+1} - V_{3n-1} - V_{3n-2} - V_{3n-3} - V_{3n-4}\]
Now, adding these equations, we have
\[\sum_{k=0}^{n} V_{3k} = \left(\sum_{k=0}^{n} V_{3k+1} \right) + \left(\sum_{k=0}^{n} V_{3k+2} - V_{-1} + V_{3n+2} \right) + \left(\sum_{k=0}^{n} V_{3k+1} - V_{-2} + V_{3n+1} \right)\]
\[\quad + \left(\sum_{k=0}^{n} V_{3k} - V_{-3} + V_{3n} \right) + \left(\sum_{k=0}^{n} V_{3k+2} - V_{-4} + V_{3n-1} + V_{3n+2} \right)\]
\[\Rightarrow\]
\[2 \sum_{k=0}^{n} V_{3k} = 2V_{3n+2} + V_{3n+1} + V_{3n} + V_{3n-1} - V_{-4} - V_{-3} - V_{-2} - 2V_{-1} - 2 \sum_{k=0}^{n} V_{3k+2}\]
Similarly, we write the obvious equations

\[V_{-1} = V_0 - V_{-2} - V_{-3} - V_{-4} - V_{-5} \]
\[V_2 = V_3 - V_1 - V_0 - V_{-1} - V_{-2} \]
\[V_5 = V_6 - V_4 - V_3 - V_2 - V_1 \]
\[V_6 = V_7 - V_5 - V_4 - V_3 - V_2 \]
\[V_{11} = V_{12} - V_{10} - V_9 - V_8 - V_7 \]
\[V_{14} = V_{15} - V_{13} - V_{12} - V_{11} - V_{10} \]
\[V_{17} = V_{18} - V_{16} - V_{15} - V_{14} - V_{13} \]
\[V_{20} = V_{21} - V_{19} - V_{18} - V_{17} - V_{16} \]
\[V_{23} = V_{24} - V_{22} - V_{21} - V_{20} - V_{19} \]
\[V_{26} = V_{27} - V_{25} - V_{24} - V_{23} - V_{22} \]
\[\vdots \]
\[V_{3n-4} = V_{3n-3} - V_{3n-5} - V_{3n-6} - V_{3n-7} - V_{3n-8} \]
\[V_{3n-1} = V_{3n} - V_{3n-2} - V_{3n-3} - V_{3n-4} - V_{3n-5} \]
\[V_{3n+2} = V_{3n+3} - V_{3n+1} - V_{3n} - V_{3n-1} - V_{3n-2} \]

Now, adding these equations, we obtain

\[
V_{-1} + \sum_{k=0}^{n} V_{3k+2} = \left(V_{3n+3} + \sum_{k=0}^{n} V_{3k} \right) + \left(-V_{-2} - \sum_{k=0}^{n} V_{3k+1} \right) + \left(-V_{-3} - \sum_{k=0}^{n} V_{5k} \right) \\
+ \left(V_{3n+2} - V_{-1} - V_{-4} - \sum_{k=0}^{n} V_{3k+2} \right) + \left(V_{3n+1} - V_{-2} - V_{-5} - \sum_{k=0}^{n} V_{5k+1} \right) \\
\Rightarrow 2 \sum_{k=0}^{n} V_{3k+2} = -V_{-4} - V_{-4} - 2V_{-2} - 2V_{-1} + V_{3n+3} + V_{3n+2} + V_{3n+1} - 2 \sum_{k=0}^{n} V_{5k+1}.
\]

Similarly, we write the obvious equations

\[V_{-2} = V_{-1} - V_{-3} - V_{-4} - V_{-5} - V_{-6} \]
\[V_1 = V_2 - V_0 - V_{-1} - V_{-2} - V_{-3} \]
\[V_4 = V_5 - V_3 - V_2 - V_1 - V_0 \]
\[V_7 = V_8 - V_5 - V_3 - V_2 \]
\[V_{10} = V_{11} - V_9 - V_7 - V_6 \]
\[V_{13} = V_{14} - V_{12} - V_{11} - V_{10} - V_9 \]
\[V_{16} = V_{17} - V_{15} - V_{14} - V_{13} - V_{12} \]
\[V_{19} = V_{20} - V_{18} - V_{17} - V_{16} - V_{15} \]
\[V_{22} = V_{23} - V_{21} - V_{20} - V_{19} - V_{18} \]
\[V_{25} = V_{26} - V_{24} - V_{23} - V_{22} - V_{21} \]
\[\vdots \]
\[V_{3n-5} = V_{3n-4} - V_{3n-6} - V_{3n-7} - V_{3n-8} - V_{3n-9} \]
\[V_{3n+2} = V_{3n+1} - V_{3n-3} - V_{3n-4} - V_{3n-5} - V_{3n-6} \]
\[V_{3n+1} = V_{3n+2} - V_{3n} - V_{3n-1} - V_{3n-2} - V_{3n-3} \]
Now, adding these equations, we obtain
\[
V_{-2} + \sum_{k=0}^{n} V_{3k+1} = \left(V_{-1} + \sum_{k=0}^{n} V_{3k+2} \right) + \left(-V_{-3} - \sum_{k=0}^{n} V_{3k} \right) + \left(V_{3n+2} - V_{-4} - V_{-1} - \sum_{k=0}^{n} V_{3k+2} \right) + \left(V_{3n+1} - V_{-5} - V_{-2} - \sum_{k=0}^{n} V_{3k+1} \right) + \left(V_{3n} - V_{-6} - V_{-3} - \sum_{k=0}^{n} V_{3k} \right) = 0
\]
\[
2 \sum_{k=0}^{n} V_{3k+1} = -2V_{-2} - V_{-6} - V_{-5} - V_{-4} - 2V_{-3} + V_{3n+2} + V_{3n+1} + V_{3n} - 2 \sum_{k=0}^{n} V_{3k}
\]

Solving the following system
\[
2 \sum_{k=0}^{n} V_{3k} = 2V_{3n+2} + V_{3n+1} + V_{3n} + V_{3n-1} - V_{-4} - V_{-3} - V_{-2} - 2V_{-1} - 2 \sum_{k=0}^{n} V_{3k+2}
\]
\[
2 \sum_{k=0}^{n} V_{3k+2} = -V_{-5} - V_{-4} - V_{-3} - 2V_{-2} - 2V_{-1} + V_{3n+3} + V_{3n+2} + V_{3n+1} - 2 \sum_{k=0}^{n} V_{3k+1}
\]
\[
2 \sum_{k=0}^{n} V_{3k+1} = -2V_{-2} - V_{-6} - V_{-5} - V_{-4} - 2V_{-3} + V_{3n+2} + V_{3n+1} + V_{3n} - 2 \sum_{k=0}^{n} V_{3k}
\]
we find
\[
\sum_{k=0}^{n} V_{3k} = \frac{1}{4} \left(-V_{3n+3} + 2V_{3n+2} + V_{3n+1} + 2V_{3n} + V_{3n-1} - V_{4} + 2V_{3} - V_{2} + 3V_{0} \right)
\]
\[
\sum_{k=0}^{n} V_{3k+1} = \frac{1}{4} \left(V_{3n+3} + V_{3n+1} - V_{3n-1} + V_{4} - 2V_{3} - V_{2} + 2V_{1} - V_{0} \right)
\]
\[
\sum_{k=0}^{n} V_{3k+2} = \frac{1}{4} \left(V_{3n+3} + 2V_{3n+2} + V_{3n+1} + V_{3n-1} - V_{4} + 3V_{2} + V_{0} \right)
\]

(g),(h),(i),(j) As in the cases (d),(e),(f), solving the following system
\[
2 \sum_{k=0}^{n} V_{4k} = V_{4n+3} + V_{4n+2} + V_{4n+1} + V_{4n} - V_{1} + V_{0} - \sum_{k=0}^{n} V_{4k+2} - \sum_{k=0}^{n} V_{4k+3}
\]
\[
2 \sum_{k=0}^{n} V_{4k+1} = V_{4n+3} + V_{4n+2} + V_{4n+1} - V_{2} + V_{1} + V_{0} - \sum_{k=0}^{n} V_{4k+3} - \sum_{k=0}^{n} V_{4k}
\]
\[
2 \sum_{k=0}^{n} V_{4k+2} = V_{4n+3} + V_{4n+2} - V_{3} + V_{2} + V_{1} + V_{0} - \sum_{k=0}^{n} V_{4k+1} - \sum_{k=0}^{n} V_{4k}
\]
\[
2 \sum_{k=0}^{n} V_{4k+3} = V_{4n+4} + V_{4n+3} - V_{4} + V_{3} + V_{2} + V_{1} - \sum_{k=0}^{n} V_{4k+2} - \sum_{k=0}^{n} V_{4k+1}
\]
we find
\[
\sum_{k=0}^{n} V_{4k} = \frac{1}{16} \left(-5V_{4n+4} + 4V_{4n+3} + 9V_{4n+2} + 10V_{4n+1} + 7V_{4n} + 5V_{4} - 4V_{3} - 9V_{2} - 10V_{1} + 9V_{0} \right)
\]
\[
\sum_{k=0}^{n} V_{4k+1} = \frac{1}{16} \left(-6V_{4n+4} + 4V_{4n+3} + 5V_{4n+2} + 2V_{4n+1} - 5V_{4n} + 4V_{4} - 4V_{3} - 5V_{2} + 14V_{1} + 5V_{0} \right)
\]
\[
\sum_{k=0}^{n} V_{4k+2} = \frac{1}{16} \left(3V_{4n+4} + 4V_{4n+3} + V_{4n+2} - 6V_{4n+1} - V_{4n} - 3V_{4} - 4V_{3} + 15V_{2} + 6V_{1} + V_{0} \right)
\]
\[
\sum_{k=0}^{n} V_{4k+3} = \frac{1}{16} \left(7V_{4n+4} + 4V_{4n+3} - 3V_{4n+2} + 2V_{4n+1} + 3V_{4n} - 7V_{4} + 12V_{3} + 3V_{2} - 2V_{1} - 3V_{0} \right)
\]
(k),(l),(m),(n),(o) As in the cases (d),(e),(f), solving the following system

\[
\sum_{k=0}^{n} V_{5k} = V_{5n+4} + V_{5n+3} + V_{5n+2} + V_{5n+1} - V_{1} + V_{0} - \sum_{k=0}^{n} V_{5k+4} - \sum_{k=0}^{n} V_{5k+3} - \sum_{k=0}^{n} V_{5k+2} + \sum_{k=0}^{n} V_{5k+1} - \sum_{k=0}^{n} V_{5k}
\]

we find

\[
\sum_{k=0}^{n} V_{5k} = \frac{1}{4} (4V_{5n+4} + 3V_{5n+3} + 2V_{5n+2} + V_{5n+1} - 3V_{5n+5} + 7V_{0} - V_{4} + V_{2} + 2V_{1})
\]

For a different proof of (a),(b),(c) see [4]. As special cases of above Theorem, we have the following two Corollaries. First one present some summation formulas of Pentanacci numbers.

COROLLARY 2.2 For \(n \geq 0 \), we have the following formulas:

(a) \(\sum_{k=0}^{n} P_{k} = \frac{1}{4}(P_{n+4} - P_{n+2} - 2P_{n+1} + P_{n} - 1) \)

(b) \(\sum_{k=0}^{n} P_{2k+1} = \frac{1}{4}(3P_{n+2} + 4P_{n+1} + P_{n+2} + 2P_{n+1} - P_{2n+1} + 3P_{n+1} - 1) \)

(c) \(\sum_{k=0}^{n} P_{2k+1} = \frac{1}{4}(3P_{n+2} + 4P_{n+1} + P_{n+2} + 2P_{n+1} - P_{2n+1} + 3P_{n+1} - 1) \)

(d) \(\sum_{k=0}^{n} P_{3k+1} = \frac{1}{4}(-P_{n+3} + 2P_{n+2} + P_{n+1} + 2P_{n} + P_{n+1} - 1) \)

(e) \(\sum_{k=0}^{n} P_{3k+2} = \frac{1}{4}(-P_{n+3} + P_{n+1} - P_{n+1} - 1) \)

(f) \(\sum_{k=0}^{n} P_{3k+2} = \frac{1}{4}(-P_{n+3} + 2P_{n+2} + P_{n+1} + P_{n+1} - 1) \)

(g) \(\sum_{k=0}^{n} P_{4k} = \frac{1}{4}(-5P_{n+4} + 4P_{n+3} + 9P_{n+2} + 10P_{n+1} + 7P_{4} - 7) \)

(h) \(\sum_{k=0}^{n} P_{4k+1} = \frac{1}{4}(-P_{n+4} + 4P_{n+3} + 5P_{n+2} + 2P_{n+1} - 5P_{4} + 5) \)

(i) \(\sum_{k=0}^{n} P_{4k+2} = \frac{1}{4}(3P_{n+4} + 4P_{n+3} + P_{n+2} - 6P_{n} + 1) \)

(j) \(\sum_{k=0}^{n} P_{4k+3} = \frac{1}{4}(7P_{n+4} + 4P_{n+3} - 3P_{n+2} + 2P_{n+1} + 3P_{4} - 3) \)

(k) \(\sum_{k=0}^{n} P_{5k} = \frac{1}{4}(-3P_{n+5} + 4P_{n+4} + 3P_{n+3} + 2P_{n+2} + P_{n+1} - 1) \)

(l) \(\sum_{k=0}^{n} P_{5k+1} = \frac{1}{4}(P_{n+5} - P_{n+3} - 2P_{n+2} - 3P_{n+1} + 3) \)

(m) \(\sum_{k=0}^{n} P_{5k+2} = \frac{1}{4}(P_{n+5} - P_{n+3} - 2P_{n+2} + P_{n+1} - 1) \)
Next Corollary gives some summation formulas of Pentanacci-Lucas numbers.

COROLLARY 2.3 For \(n \geq 0 \), we have the following formulas:

(a) \(\sum_{k=0}^{n} Q_k = \frac{1}{3}(Q_{n+4} - Q_{n+2} - 2Q_{n+1} + Q_n + 5) \)

(b) \(\sum_{k=0}^{n} Q_{2k+1} = \frac{1}{5}(3Q_{2n+2} + 4Q_{2n+1} + Q_{2n} + 2Q_{2n-1} - Q_{2n-2} - 9) \)

(c) \(\sum_{k=0}^{n} Q_{2k} = \frac{1}{5}(-Q_{2n+2} + 4Q_{2n+1} + 5Q_{2n} + 2Q_{2n-1} + 3Q_{2n-2} + 19) \)

(d) \(\sum_{k=0}^{n} Q_{2k+2} = \frac{1}{5}(-Q_{3n+4} - 2Q_{3n+2} + Q_{3n+1} + 2Q_{3n} + Q_{3n-1} + 11) \)

(e) \(\sum_{k=0}^{n} Q_{3k+1} = \frac{1}{5}(Q_{3n+3} + Q_{3n+1} - Q_{3n-1} - 5) \)

(f) \(\sum_{k=0}^{n} Q_{3k+2} = \frac{1}{5}(Q_{3n+3} + 2Q_{3n+2} + Q_{3n+1} + Q_{3n-1} - 1) \)

(g) \(\sum_{k=0}^{n} Q_{4k} = \frac{1}{10}(-5Q_{4n+4} + 4Q_{4n+3} + 9Q_{4n+2} + 10Q_{4n+1} + 7Q_{4n} + 55) \)

(h) \(\sum_{k=0}^{n} Q_{4k+1} = \frac{1}{10}(-Q_{4n+4} + 4Q_{4n+3} + 5Q_{4n+2} + 2Q_{4n+1} - 5Q_{4n} + 11) \)

(i) \(\sum_{k=0}^{n} Q_{4k+2} = \frac{1}{10}(3Q_{4n+4} + 4Q_{4n+3} + Q_{4n+2} - 6Q_{4n+1} - Q_{4n} - 17) \)

(j) \(\sum_{k=0}^{n} Q_{4k+3} = \frac{1}{10}(7Q_{4n+4} + 4Q_{4n+3} - 3Q_{4n+2} + 2Q_{4n+1} + 3Q_{4n} - 29) \)

(k) \(\sum_{k=0}^{n} Q_{5k+1} = \frac{1}{5}(-3Q_{5n+5} + 4Q_{5n+4} + 3Q_{5n+3} + 2Q_{5n+2} + Q_{5n+1} + 25) \)

(l) \(\sum_{k=0}^{n} Q_{5k+2} = \frac{1}{5}(Q_{5n+5} - Q_{5n+3} - 2Q_{5n+2} - 3Q_{5n+1} - 11) \)

(m) \(\sum_{k=0}^{n} Q_{5k+3} = \frac{1}{5}(Q_{5n+5} - Q_{5n+3} - 2Q_{5n+2} + Q_{5n+1} - 7) \)

(n) \(\sum_{k=0}^{n} Q_{5k+4} = \frac{1}{5}(Q_{5n+5} - Q_{5n+3} + 2Q_{5n+2} + Q_{5n+1} - 3) \)

(o) \(\sum_{k=0}^{n} Q_{5k+4} = \frac{1}{5}(Q_{5n+5} + 3Q_{5n+3} + 2Q_{5n+2} + Q_{5n+1} + 1) \)

3 Linear Sums of Generalized Gaussian Pentanacci Numbers

A Gaussian integer \(z \) is a complex number whose real and imaginary parts are both integers, i.e., \(z = a + bi \), \(a, b \in \mathbb{Z} \). If we use together sequences of integers defined recursively and Gaussian type integers, we obtain a new sequences of complex numbers such as Gaussian Fibonacci, Gaussian Lucas, Gaussian Pell, Gaussian Pell-Lucas and Gaussian Jacobsthal numbers; Gaussian Padovan and Gaussian Pell-Padovan numbers; Gaussian Tribonacci numbers. Gaussian generalized Pentanacci numbers \(\{GV_n\}_{n \geq 0} \) are defined by

\[
GV_n = GV_{n-1} + GV_{n-2} + GV_{n-3} + GV_{n-4} + GV_{n-5},
\]

with the initial conditions

\[
GV_0 = c_0 + (-c_0 - c_1 - c_2 - c_3 + c_4)i, \quad GV_1 = c_1 + c_0i, \quad GV_2 = c_2 + c_1i,
\]

\[
GV_3 = c_3 + c_2i, \quad GV_4 = c_4 + c_3i
\]

not all being zero. The sequences \(\{GV_n\}_{n \geq 0} \) can be extended to negative subscripts by defining

\[
GV_{-n} = -GV_{-(n-1)} - GV_{-(n-2)} - GV_{-(n-3)} - GV_{-(n-4)} - GV_{-(n-5)}
\]

for \(n = 1, 2, 3, \ldots \). Therefore, recurrence (3.1) hold for all integer \(n \). Note that for \(n \geq 0 \)

\[
GV_n = V_n + iV_{n-1}
\]
and
\[GV_n = V_n + iV_{n-1} \]
We consider two special cases of \(GV_n \): \(GV_n(0, 1, 1 + i, 2 + i, 4 + 2i) = GP_n \) is the sequence of Gaussian Pentanacci numbers and \(GV_n(5 - i, 1 + 5i, 3 + i, 7 + 3i, 15 + 7i) = GQ_n \) is the sequence of Gaussian Pentanacci-Lucas numbers. We formally define them as follows:

Gaussian Pentanacci numbers are defined by
\[GP_n = GP_{n-1} + GP_{n-2} + GP_{n-3} + GP_{n-4} + GP_{n-5}, \tag{3.3} \]
with the initial conditions
\[GP_0 = 0, \quad GP_1 = 1, \quad GP_2 = 1 + i, \quad GP_3 = 2 + i, \quad GP_4 = 4 + 2i \]
and Gaussian Pentanacci-Lucas numbers are defined by
\[GQ_n = GQ_{n-1} + GQ_{n-2} + GQ_{n-3} + GQ_{n-4} + GQ_{n-5} \tag{3.4} \]
with the initial conditions
\[GQ_0 = 5 - i, \quad GQ_1 = 1 + 5i, \quad GQ_2 = 3 + i, \quad GQ_3 = 7 + 3i, \quad GQ_4 = 15 + 7i. \]

Note that for \(n \geq 0 \)
\[GP_n = M_n + iM_{n-1}, \quad GQ_n = R_n + iR_{n-1} \]
and
\[GP_n = M_n - iM_{n-1}, \quad GQ_n = R_n - iR_{n-1}. \]

The following Theorem present some summation formulas of Gaussian generalized Pentanacci numbers.

THEOREM 3.1 For \(n \geq 0 \) we have the following formulas:

(a) \[\sum_{k=0}^{n} GV_k = \frac{1}{4}(GV_{n+4} - GV_{n+2} - 2GV_{n+1} + GV_n - GV_4 + GV_2 + 2GV_1 + 3GV_0) \]

(b) \[\sum_{k=0}^{n} GV_{2k+1} = \frac{1}{4}(3GV_{2n+2} + 4GV_{2n+1} + GV_{2n} + 2GV_{2n-1} - GV_{2n-2} - 3GV_{4} + 4GV_{3} - GV_{2} + 6GV_{1} + GV_0) \]

(c) \[\sum_{k=0}^{n} GV_{2k} = \frac{1}{8}(-GV_{2n+2} + 4GV_{2n+1} + 5GV_{2n} + 2GV_{2n-1} + 3GV_{2n-2} + GV_{4} - 4GV_{3} + 3GV_{2} - 2GV_{1} + 5GV_0) \]

(d) \[\sum_{k=0}^{n} GV_{3k} = \frac{1}{8}(-GV_{3n+3} + 2GV_{3n+2} + GV_{3n+1} + 2GV_{3n} + GV_{3n-1} - GV_{4} + 2GV_{3} - 2GV_{2} + GV_{1} - GV_0) \]

(e) \[\sum_{k=0}^{n} GV_{3k+1} = \frac{1}{4}(GV_{3n+3} + GV_{3n+1} - GV_{3n} + 4GV_{3} - 2GV_{2} - 2GV_{1} - GV_0) \]

(f) \[\sum_{k=0}^{n} GV_{3k+2} = \frac{1}{4}(GV_{3n+3} + 2GV_{3n+2} + GV_{3n+1} + GV_{3n-1} - GV_{4} + 3GV_{2} + GV_0) \]

(g) \[\sum_{k=0}^{n} GV_{4k} = \frac{1}{16}(-5GV_{4n+4} + 4GV_{4n+3} + 9GV_{4n+2} + 10GV_{4n+1} + 7GV_{4n} + 5GV_{4} - 4GV_{3} - 9GV_{2} - 10GV_{1} + 9GV_0) \]

(h) \[\sum_{k=0}^{n} GV_{4k+1} = \frac{1}{16}(-GV_{4n+4} + 4GV_{4n+3} + 5GV_{4n+2} + 2GV_{4n+1} - 5GV_{4n} + GV_{4} - 4GV_{3} - 5GV_{2} + 14GV_{1} + 5GV_0) \]

(i) \[\sum_{k=0}^{n} GV_{4k+2} = \frac{1}{16}(3GV_{4n+4} + 4GV_{4n+3} + GV_{4n+2} - 6GV_{4n+1} - GV_{4n} - 3GV_{4} - 4GV_{3} + 15GV_{2} + 6GV_{1} + GV_0) \]

(j) \[\sum_{k=0}^{n} GV_{4k+3} = \frac{1}{16}(7GV_{4n+4} + 4GV_{4n+3} - 3GV_{4n+2} + 2GV_{4n+1} + 3GV_{4n} - 7GV_{4} + 12GV_{3} + 3GV_{2} - 2GV_{1} - 3GV_0) \]

(k) \[\sum_{k=0}^{n} GV_{2k} = \frac{1}{4}(-3GV_{5n+5} + 4GV_{5n+4} + 3GV_{5n+3} + 2GV_{5n+2} + GV_{5n+1} - GV_4 + GV_{2} + 2GV_{1} + 7GV_0) \]
(l) \[\sum_{k=0}^{n} GV_{5k+1} = \frac{1}{5} (GV_{5n+5} - GV_{5n+3} - 2GV_{5n+2} - 3GV_{5n+1} - GV_{5n} - 2GV_{5n-1} - GV_{5n-2}) \]

(m) \[\sum_{k=0}^{n} GV_{5k+2} = \frac{1}{4} (GV_{5n+5} - GV_{5n+3} - 2GV_{5n+2} + GV_{5n+1} - \frac{5}{2}GV_{5n} - 2GV_{5n-1}) \]

(n) \[\sum_{k=0}^{n} GV_{5k+3} = \frac{1}{2} (GV_{5n+5} - 2GV_{5n+3} + 2GV_{5n+2} + GV_{5n+1} - GV_{5n} + 4GV_{5n-3} - 3GV_{5n-2} - 2GV_{5n-1} - GV_{5n-2}) \]

(o) \[\sum_{k=0}^{n} GV_{5k+4} = \frac{1}{2} (GV_{5n+5} + 3GV_{5n+3} + 2GV_{5n+2} + GV_{5n+1} + 4GV_{5n-3} - 3GV_{5n-2} - 2GV_{5n-1} - GV_{5n-2}) \]

Proof. (a)-(o) can be proved exactly as in the proof of Theorem 2.

As special cases of the above Theorem, we have the following two Corollaries. First one present summation formulas of Gaussian Pentanacci numbers.

COROLLARY 3.2 For \(n \geq 0 \) we have the following formulas:

(a) \[\sum_{k=0}^{n} GP_k = \frac{1}{4} (GP_{n+4} - GP_{n+2} - 2GP_{n+1} + GP_{n} - 1 - i) \]

(b) \[\sum_{k=0}^{n} GP_{2k} = \frac{1}{4} (3GP_{2n+2} + 4GP_{2n+1} + GP_{2n} + 2GP_{2n-1} - GP_{2n-2} + 1 - 3i) \]

(c) \[\sum_{k=0}^{n} GP_{2k+1} = \frac{1}{8} (GP_{2n+1} + 3GP_{2n+2} + 3GP_{2n+3} + 2GP_{2n+4} + 3GP_{2n+5} - 2GP_{2n+6} - 1 + i) \]

(d) \[\sum_{k=0}^{n} GP_{2k+2} = \frac{1}{4} (GP_{2n+5} + 2GP_{2n+3} + GP_{2n+1} - GP_{2n-1} + 1 - i) \]

(e) \[\sum_{k=0}^{n} GP_{2k+3} = \frac{1}{10} (GP_{2n+6} + 2GP_{2n+3} + GP_{2n+5} + GP_{2n+1} + 1 + i) \]

(f) \[\sum_{k=0}^{n} GP_{2k+4} = \frac{1}{10} (GP_{2n+7} - 3GP_{2n+5} + 9GP_{4n+2} + 10GP_{4n+1} - 7GP_{4n} - 7 + 3i) \]

(g) \[\sum_{k=0}^{n} GP_{2k+5} = \frac{1}{10} (-5GP_{4n+2} + 4GP_{4n+3} + 9GP_{4n+4} + 10GP_{4n+5} - 7GP_{4n} - 7 + 3i) \]

(h) \[\sum_{k=0}^{n} GP_{2k+6} = \frac{1}{10} (-5GP_{4n+1} + 4GP_{4n+2} + 9GP_{4n+3} + 10GP_{4n+4} - 7GP_{4n} + 5 + 7i) \]

(i) \[\sum_{k=0}^{n} GP_{2k+7} = \frac{1}{10} (7GP_{4n} + 4GP_{4n+1} - 2GP_{4n+2} + GP_{4n+1} - 1 + i) \]

(j) \[\sum_{k=0}^{n} GP_{2k+8} = \frac{1}{10} (15GP_{4n+2} + 4GP_{4n+3} - 3GP_{4n+4} + 2GP_{4n+1} + 3GP_{4n} + 3 + i) \]

(k) \[\sum_{k=0}^{n} GP_{2k+9} = \frac{1}{10} (-5GP_{4n+1} + 4GP_{4n+2} + 9GP_{4n+3} + 10GP_{4n+4} - 7GP_{4n} - 7 + 3i) \]

(l) \[\sum_{k=0}^{n} GP_{2k+10} = \frac{1}{10} (15GP_{4n+2} + 4GP_{4n+3} - 3GP_{4n+4} + 2GP_{4n+1} + 3GP_{4n} + 3 + i) \]

Second Corollary gives summation formulas of Gaussian Pentanacci-Lucas numbers.

COROLLARY 3.3 For \(n \geq 0 \) we have the following formulas:

(a) \[\sum_{k=0}^{n} GQ_k = \frac{1}{4} (GQ_{n+4} - GQ_{n+2} - 2GQ_{n+1} + GQ_{n} + 5 + i) \]

(b) \[\sum_{k=0}^{n} GQ_{2k} = \frac{1}{4} (3GQ_{2n+2} + 4GQ_{2n+1} + GQ_{2n} + 2GQ_{2n-1} - GQ_{2n-2} + 9 + 19i) \]

(c) \[\sum_{k=0}^{n} GQ_{2k+1} = \frac{1}{4} (-GQ_{2n+1} + 3GQ_{2n+2} + GQ_{2n+1} + 5GQ_{2n} + 2GQ_{2n-1} + 3GQ_{2n-2} + 19 + 17i) \]

(d) \[\sum_{k=0}^{n} GQ_{2k+2} = \frac{1}{4} (GQ_{2n+1} + 3GQ_{2n+2} + 2GQ_{2n+3} + GQ_{2n+4} + GQ_{2n+5} + GQ_{2n+6} + 11 + 5i) \]

(e) \[\sum_{k=0}^{n} GQ_{2k+3} = \frac{1}{4} (GQ_{2n+1} + 3GQ_{2n+2} + 2GQ_{2n+3} + GQ_{2n+4} + GQ_{2n+5} + GQ_{2n+6} + 11 + 5i) \]

(f) \[\sum_{k=0}^{n} GQ_{2k+4} = \frac{1}{4} (3GQ_{4n+4} + 4GQ_{4n+3} + 6GQ_{4n+2} + 9GQ_{4n+1} + 10GQ_{4n} + 55 + 45i) \]

(g) \[\sum_{k=0}^{n} GQ_{2k+5} = \frac{1}{4} (5GQ_{4n+4} + 4GQ_{4n+3} + 9GQ_{4n+2} + 10GQ_{4n+1} + 7GQ_{4n} + 55 + 45i) \]

(h) \[\sum_{k=0}^{n} GQ_{2k+6} = \frac{1}{4} (5GQ_{4n+4} + 4GQ_{4n+3} + 9GQ_{4n+2} + 10GQ_{4n+1} + 7GQ_{4n} + 55 + 45i) \]

(i) \[\sum_{k=0}^{n} GQ_{2k+7} = \frac{1}{4} (3GQ_{4n+4} + 4GQ_{4n+3} + 6GQ_{4n+2} - 6GQ_{4n+1} - GQ_{4n} - 17 + 11i) \]

(j) \[\sum_{k=0}^{n} GQ_{2k+8} = \frac{1}{4} (7GQ_{4n+4} + 4GQ_{4n+3} - 3GQ_{4n+2} - 2GQ_{4n+1} + 3GQ_{4n} - 29 - 17i) \]
4 Conclusion

- In section 2, linear summation formulas have been presented for generalized Pentanacci numbers. As special cases, linear summation formulas of Pentanacci and Pentanacci-Lucas numbers have been given.
- In section 3, linear summation formulas have been presented for generalized Gaussian Pentanacci numbers. As special cases, linear summation formulas of Gaussian Pentanacci and Gaussian Pentanacci-Lucas numbers have been given.

In this work, a number of linear sum identities were discovered and proved. We have written them in terms of the generalized Pentanacci sequence, and then we have presented the formulas as special cases the corresponding identity for the Pentanacci and Pentanacci-Lucas sequences. All the listed identities may be proved by induction, but that method of proof gives no clue about their discovery. We give the proofs to indicate how these identities, in general, were discovered.

It is our intention to continue the study and explore some linear summation properties of some type of number sequences, such as Hexanacci and Hexanacci-Lucas numbers.

Acknowledgement

The author express his sincere thanks to the referees for their careful reading and suggestions that helped to improve this paper.

Competing Interests

Author has declared that no competing interests exist.

References

