Symbolic Derivation of a Probability-Ready Expression for the Reliability Analysis of a Multi-State Delivery Network

Ali Muhammad Ali Rushdi1* and Motaz Hussain Amashah1

1Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, P.O.Box 80204, Jeddah 21589, Kingdom of Saudi Arabia.

Authors’ contributions

This work was carried out in collaboration between the two authors. Author AMAR wrote the entire draft of the manuscript, conducted the mathematical and conceptual analyses and managed the basic literature survey. Author MHA participated in the literature search, performed the computational work and constructed the table of results. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JAMCS/2021/v36i230337

Authors:

(1) Dr. Metin Basarir, Sakarya University, Turkey.

Reviewers:

(1) David Lizcano, Madrid Open University, Spain.

(2) Yunming Wang, Dalian Jiaotong University, China.

Complete Peer review History: http://www.sdiarticle4.com/review-history/65967

Received: 17 December 2020
Accepted: 23 February 2021
Published: 26 March 2021

Abstract

This paper deals with the reliability of a multi-state delivery network (MSDN) with multiple suppliers, transfer stations and markets (depicted as vertices), connected by branches of multi-state capacities, delivering a certain commodity or service between their end vertices. We utilize a symbolic logic expression of the network success to satisfy the market demand within budget and production capacity limitations even when subject to deterioration. This system success is a two-valued function expressed in terms of multi-valued component successes, and it has been obtained in the literature in minimal form as the disjunction of prime implicants or minimal paths of the pertinent network. The main contribution of this paper is to provide a systematic procedure for converting this minimal expression into a probability-ready expression (PRE). We successfully extrapolate the PRE concept from the two-valued logical domain to the multi-valued logical domain. This concept is of paramount importance since it allows a direct transformation of a random logical expression, on a one-to-one one, to its statistical expectation form, simply by replacing all logic variables by their statistical expectations, and also substituting arithmetic multiplication and addition for their logical counterparts (ANDing and ORing). The statistical expectation of the expression is its probability of being equal to 1, and is simply called network reliability. The proposed method is illustrated with a detailed symbolic example of a real-case study, and it produces a more precise version of the same numerical value that was obtained earlier by an alternative means. This paper is a part of an ongoing activity to develop pedagogical material for various candidate techniques for assessing multi-state reliability.
Keywords: Network reliability; probability-ready expression; multi-state system; multiple-valued logic; symbolic expression; multi-state delivery network.

1 Introduction

Consider a multi-state delivery network (MSDN) with multiple suppliers, in which a vertex denotes a supplier, a transfer station or a market, while a branch denotes a carrier providing the delivery service for a pair of vertices [1-5]. The capacity that is available for a specific customer of the carrier responsible for the delivery on a branch is treated as a multi-state variable, since this capacity is shared among several customers including the one under consideration. The addressed problem is to evaluate the network reliability, the probability that the MSDN with the deterioration consideration can satisfy the market demand within the budget and production capacity limitations. Lin et al. [1] developed an algorithm to deduce the binary system success in terms of the multi-valued component successes, and then to transform this success to its expectation, which is called network reliability. They also provided a numerical example to illustrate the first part of their solution procedure. However, they did not explain the details of the second part of this procedure, which pertains to the replacement of the logical expression of a multi-state disjunctive normal form (DNF) by its expectation. In fact, they utilized an automated implementation of the method of the recursive sum of disjoint products (RSDP) [6,7], which is one of many candidate methods [1-21], characterized as being more computationally efficient, especially for larger networks [10].

This paper makes its point through the multi-valued symbolic analysis of the aforementioned specific (albeit standard) problem of a multi-state delivery network of a supply chain [1]. Our results provide a truly independent means to check and verify the earlier solution of this problem reported in [1]. The present analysis can be extended to other multi-state systems (MSSs) of comparable sizes, and might be automated to handle more general MSSs that are of larger sizes. The paper utilizes algebraic techniques of multiple-valued logic to evaluate the system binary output or success as a function of the system multivalued inputs. The formula for this output is written as a probability–ready expression, thereby allowing its immediate conversion, on a one-to-one basis, into a probability or expected value. The paper strives to provide a pedagogically-insightful paradigm that establishes a clear and fruitful interrelationship between binary modeling and MSS modeling by stressing that multi-valued concepts are natural and simple extensions of two-valued ones. The mathematical treatment and details given herein strictly adhere to this paradigm, and hence assert the notion that there is no need to reinvent the wheel while extrapolating from two states to multiple states. We hope that our work might help researchers avoid the waste of time and duplication of effort involved in trying to handle multi-state problems as if they were totally new.

The organization of the remainder of this paper is as follows. Section 2 presents important pertinent assumptions and notation. Section 3 introduces the running example of a multi-state delivery network (MSDN) with multiple suppliers, borrowed from [1]. Section 4 extends the concept of a probability-ready expression (PRE) from the binary to the multi-state case. Section 5 provides a detailed symbolic conversion of the given multi-state sum-of-products expression of system success for the running example into a PRE form, and hence computes a more precise version of the same numerical value that was obtained earlier in [1]. Section 5 also identifies techniques for validating and checking the results obtained. Section 6 concludes the paper and suggests some future work.

2 Assumptions and Notation

2.1 Assumptions

- The model considered is one of a system with binary output and multistate components, specified by the structure or success function \(S(X)\) [7,22]

\[
S: \{0, 1, \ldots, m_1\} \times \{0, 1, \ldots, m_2\} \times \ldots \times \{0, 1, \ldots, m_n\} \rightarrow \{0, 1\}.
\]

(1)
• The system is generally non-homogeneous, i.e., the number of system states (two) and the numbers of component states \((m_1 + 1), (m_2 + 1), \ldots, (m_n + 1)\) might differ. When these numbers have a common value, the system reduces to a homogeneous one.

• The system is a non-repairable one with statistically independent non-identical (heterogeneous) components.

• The system is a coherent one enjoying the properties of causality, monotonicity, and component relevancy [22-28].

2.2 Notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X_k)</td>
<td>A multivalued input variable representing component (k) ((1 \leq k \leq n)), where (X_k \in {0, 1, \ldots, m_k}), and (m_k \geq 1) is the highest value of (X_k).</td>
</tr>
</tbody>
</table>

\[X_k(j)\] A binary variable representing instant \(j\) of \(X_k\)

\[X_k(j) = \{X_k = j\},\]
i.e., \(X_k(j) = 1\) if \(X_k = j\) and \(X_k(j) = 0\) if \(X_k \neq j\). The instances \(X_k(j)\) for \(0 \leq j \leq m_k\) form an orthonormal set, namely, for \(1 \leq k \leq n\)

\[V_k^m = \sum_{j=0}^{m_k} X_k(j) = 1.\] (2a)

\[X_k(j_1)X_k(j_2) = 0\] for \(j_1 \neq j_2\). (2b)

Orthonormality is very useful in constructing inverses or complements. The complement of the union of certain instances is the union of the complementary instances. In particular, the complement of \(X_k(\geq j) = X_k(j, j + 1, \ldots, m_k)\) is \(X_k(< j) = X_k(0, 1, \ldots, j - 1)\).

\[X_k(\geq j)\] An upper value of \(X_k\) \((0 \leq j \leq m_k)\):

\[X_k(j) = X_k(j, j + 1, \ldots, m_k) = \bigvee_{i=j}^{m_k} X_k(i) = X_k(j) \lor X_k(j + 1) \lor \ldots \lor X_k(m_k).\] (3)

The value \(X_k(0)\) is identically 1. The set \(X_k(\geq j)\) for \(1 \leq j \leq m_k\) is neither independent nor disjoint, and hence it is difficult to be handled mathematically, but it is very convenient for translating the verbal or map/tabular description of a coherent component into a mathematical form when viewing component success at level \(j\). The complement of \(X_k(\geq j)\) is

\[X_k(< j) = X(0, 1, \ldots, j - 1) = X_k(0) \lor X_k(1) \lor \ldots \lor X_k(j - 1) = X_k(k \leq (j - 1)).\] (4)

\[X_k(\leq j)\] A lower value of \(X_k\) \((0 \leq j \leq m_k)\):

\[X_k(\leq j) = X_k(0, 1, \ldots, j) = \bigvee_{i=j}^m X_k(i) = X_k(0) \lor X_k(1) \lor \ldots \lor X_k(j).\] (5)

The value \(X_k(0)\) is identically 1. The set \(X_k(\leq j)\) for \(0 \leq j \leq (m_k - 1)\) is neither independent nor disjoint, and hence it is not convenient for mathematical manipulation though it is suitable for expressing component failure at level \((j + 1)\). Instances, upper values and lower values are related by

\[X_k(j) = X_k(\geq j)X_k(< j + 1) = X_k(\geq j)X_k(< j) = X_k(\leq j)X_k(> (j - 1)) = X_k(\leq j)\overline{X}_k(\leq (j - 1)).\] (6)

\(S\) A binary output variable representing the system, where \(S \in \{0, 1\}\). The function \(S(X)\) is usually called the system success or the structure function. Its complement \(\overline{S}(X)\) is called system failure, and is also a binary variable. The logical sum and arithmetic sum of success and failure are both equal to 1, namely

\[(S(X) \lor \overline{S}(X)) = (S(X) + \overline{S}(X)) = 1.\] (7)

3 Detailed Running Example

Lin et al. [1] studied the multi-state delivery network (MMSN) with multiple suppliers shown in Fig. 1. The network contains two suppliers, one market, two transfer centers and eight branches. The network has specific data of delivery costs, probability distributions of all branches and available capacities that are listed.
in [1], together with the suppliers’ production capacities. The minimal paths (MPs) connecting source\(_1\) and terminal \(t\) can be expressed as \(P_1 = \{b_1, b_3\}\), \(P_2 = \{b_2, b_4\}\) and \(P_3 = \{b_2, b_5, b_6\}\), and the MPs connecting source\(_2\) and terminal \(t\) are \(P_4 = \{b_3, b_7\}\), \(P_5 = \{b_7, b_8, b_9\}\) and \(P_6 = \{b_9, b_1\}\). The deterioration rate vector for the six MPs is given together with the demand, production capacity and the budget. The final multi-state success expression derived from Table 2 in [1] (with appropriate translation of notation) is given by

\[
S = X_3(\geq 3)X_6(\geq 3)X_9(\geq 3)
\vee X_4(\geq 3)X_7(\geq 3)
\vee X_2(\geq 3)X_5(\geq 3)X_8(\geq 3)
\vee X_2(\geq 2)X_3(\geq 2)X_4(\geq 2)X_7(\geq 3)X_9(\geq 2)
\vee X_5(\geq 3)X_7(\geq 3)
\vee X_4(\geq 2)X_5(\geq 2)X_6(\geq 2)X_7(\geq 2)X_8(\geq 2)
\vee X_1(\geq 2)X_2(\geq 2)X_4(\geq 2)X_6(\geq 2)X_7(\geq 2)X_8(\geq 2)
\vee X_1(\geq 2)X_2(\geq 2)X_3(\geq 2)X_6(\geq 2)X_7(\geq 3).
\] (8)

The numerical values for the expectations of various variable instances, computed from data given in [1] are listed in Table 1.

![Fig. 1. The multi-state delivery network (MSDN) with multiple suppliers studied in [1]](image)

Table 1. Numerical values for the expectations of various variable instances, computed from data given in [1]

\(X_1(\geq 2)\)	0.897	\(X_3(\geq 3)\)	0.905
\(X_2(\geq 3)\)	0.892	\(X_3(\geq 2)\)	0.953
\(X_3(\leq 3)\)	0.108	\(X_3(\geq 2)\)	0.048
\(X_4(\geq 3)\)	0.965	\(X_4(\leq 3)\)	0.095
\(X_4(\leq 2)\)	0.073	\(X_4(\geq 2)\)	0.863
\(X_5(\leq 3)\)	0.137	\(X_5(\geq 3)\)	0.903
\(X_5(\leq 3)\)	0.097	\(X_5(\geq 2)\)	0.943
\(X_7(\geq 2)\)	0.945	\(X_7(\geq 3)\)	0.884
\(X_7(\leq 2)\)	0.061	\(X_7(\leq 3)\)	0.116
\(X_9(\geq 2)\)	0.906	\(X_9(\geq 2)\)	0.965
\(X_9(\leq 2)\)	0.059	\(X_9(\leq 3)\)	0.094

4 Probability-Ready Expressions

The concept of a probability-ready expression (PRE) is well-known in the two-valued logical domain [13,29-36], and it is still valid for the multi-valued logical domain [22-28]. A Probability-Ready Expression is a random expression that can be directly transformed, on a one-to-one basis, to its statistical expectation (its probability of
being equal to 1) by replacing all logic variables by their statistical expectations, and also replacing logical multiplication and addition (ANDing and ORing) by their arithmetic counterparts. A logic expression is a PRE if

a) All ORed products (i.e., terms formed by ANDing of literals) are disjoint (mutually exclusive), and
b) All ANDed sums (i.e., alterns formed via ORing of literals) are statistically independent.

Condition (a) is satisfied if for every pair of ORed terms, there is at least a single opposition, i.e., there is at least one variable that appears with a certain set of instances in one term and appears with a complementary set of instances in the other. Condition (b) is satisfied if for every pair of ANDed alterns (sums of disjunctions of literals), one altern involves variables describing a certain set of components, while the other altern depends on variables describing a set of different components (under the assumption of independence of components) [31,32,34,36,37].

While there are many methods to introduce characteristic (a) of orthogonality (disjointness) into a Boolean expression [6,13,34,38], there is no way to induce characteristic (b) of statistical independence. The best that one can do is to observe statistical independence when it exists, and then be careful not to destroy or spoil it and take advantage of it. Since one has the freedom of handling a problem from a success or a failure perspective, a choice should be made as to which of the two perspectives can more readily produce a PRE form. It is better to look at success for a system of no or poor redundancy (a series or almost-series system), and to view failure for a system of full or significant redundancy (a parallel or almost-parallel system) [13,31-36]. A prominent method for the creation of a PRE is the Boole-Shannon Expansion [24,34,39-42].

The introduction of orthogonality might be achieved as follows. If neither of the two terms \(A \) and \(B \) in the sum \(A \lor B \) subsumes the other \((A \lor B \neq A \land A \lor B \neq B) \) and the two terms are not disjoint \((A \land B \neq 0) \), then \(B \) can be disjointed with \(A \) by factoring out any common factor (using Boolean quotients [22,34]) and then applying the Reflection Law, namely

\[
A \lor B = C((A/C) \lor (B/C)) = C((A/C) \lor (A/C)(B/C)) = A \lor (A/C)B. \tag{9}
\]

In (9), the symbol \(C \) denotes the common factor of \(A \) and \(B \), and the Boolean quotient \((A/C) \) might be viewed as the term \(A \) with its part common with \(B \) removed. If \(B \) subsumes \(A \), then \(C = A \) and \(A/C = 1 \), so that \((A/C) = 0 \), which means that \(B \) is absorbed in \(A \). Note that (9) leaves the term \(A \) intact and replaces the term \(B \) by an expression that is disjoint with \(A \). The quotient \((A/C) \) is a product of \(e \) entities \(Y_k \) \((1 \leq k \leq e)\), so that \((A/C) \) might be expressed via De Morgan’s Law as a disjunction of the form

\[
(A/C) = \bigvee_{k=1}^{e} Y_k. \tag{10}
\]

Note that each \(Y_k \) is a literal that appears in the product \(A \) and does not appear in the product \(B \). It stands for a disjunction of certain instances of some variable \(X_{(i,k)} \) and hence \(Y_k \) is a disjunction of the complementary instances of the same variable. If we combine (9) with (10), we realize that the term \(B \) is replaced by \(e \) terms \((e \geq 1)\), which are each disjoint with the term \(A \), but are not necessarily disjoint among themselves. Therefore, we replace the De Morgan’s Law in (10) by a disjoint version of it [34], namely

\[
(A/C) = \bar{Y}_1 \lor Y_1 \bar{Y}_2 \lor Y_1 Y_2 \bar{Y}_3 \lor \ldots \lor Y_1 Y_2 \ldots Y_{e-1} \bar{Y}_e
= \bar{Y}_1 \lor Y_1 (\bar{Y}_2 \lor Y_2 (\bar{Y}_3 \lor \ldots \lor (\bar{Y}_{e-1} \lor Y_{e-1} \bar{Y}_e) \ldots)). \tag{11}
\]

When (11) is combined with (9), one obtains

\[
A \lor B = A \lor (\bar{Y}_1 \lor Y_1 \bar{Y}_2 \lor Y_1 Y_2 \bar{Y}_3 \lor \ldots \lor Y_1 Y_2 \ldots Y_{e-1} \bar{Y}_e)B, \tag{12}
\]

where the first term \(A \) still remains intact, while the second term \(B \) is replaced by \(e \) terms which are each disjoint with \(A \) and are also disjoint among themselves. This means that one has a choice of either disjointing \(B \) with \(A \) in
A \lor B$, or disjointing A with B in $B \lor A$. The usual practice that is likely to yield good results is to order the terms in a given disjunction so that those with fewer literals should appear earlier.

Rushdi [24] presented a simple example of the procedure above by considering the following expression

$$S[0] = X_1[0] \lor X_2[0] \lor X_3[0] \lor X_4[0],$$

which is not a PRE, since it has ORed quantities that are not disjoint. A PRE version of it might be obtained by using the afore-mentioned disjointing procedure, namely

$$S[0] = X_4[0] \lor \bar{X}_4[0](X_2[0] \lor \bar{X}_2[0])(X_3[0] \lor \bar{X}_3[0]X_4[0])).$$

However, a much simpler PRE is obtained by simply complementing (13), namely

$$\bar{S}[0] = \bar{X}_1[0]\bar{X}_2[0]\bar{X}_3[0]\bar{X}_4[0].$$

The expression in (15) is a PRE since ANDed quantities in it are statistically independent. This example illustrates that attaining PRE form is possible not only via the implementation of a disjointing procedure, but also through effective utilization of statistical independence, which might be manifested in a particular form of the function and lacking in its complementary form.

The implementation of (12) is aided by a few simplification rules, such as

$$X_k(\geq j_1)X_k(\geq j_2) = X_k(\geq j_2) \quad \text{for } j_2 \geq j_1, \quad (16a)$$

$$X_k(\leq j_1)X_k(\leq j_2) = X_k(\leq j_2) \quad \text{for } j_2 \leq j_1, \quad (16b)$$

$$X_k(\geq j_1)X_k(\leq j_2) = X_k(j_1,j_1+1,...,j_2) \quad \text{for } j_2 \geq j_1, \quad (16c)$$

$$X_k(\geq j_1)X_k(\leq j_2) = 0 \quad \text{for } j_2 < j_1, \quad (16d)$$

$$\bar{X}_k(\geq j) = X_k(< j), \quad (16e)$$

$$X_k(\geq j_1)X_k(< j_2) = X_k(j_1,j_1+1,...,j_2-1) \quad \text{for } j_2 > j_1, \quad (16f)$$

$$X_k(\geq j_1)X_k(< j_2) = 0 \quad \text{for } j_2 \leq j_1, \quad (16g)$$

5 Derivation of a Disjoint Sum-of-Products Expression for the Running Example

We rearrange the terms of S in (8) to obtain

$$S = X_3[\geq 3]X_7[\geq 3]$$

$$\lor X_3[\geq 3]X_7[\geq 3]X_9[\geq 3]$$

$$\lor X_3[\geq 3]X_5[\geq 3]X_9[\geq 3]$$

$$\lor X_3[\geq 3]X_5[\geq 3]X_9[\geq 3]X_4[\geq 3]$$

$$\lor X_7[\geq 2]X_3[\geq 2]X_7[\geq 3]X_9[\geq 2]X_4[\geq 3]$$

$$\lor X_1[\geq 2]X_7[\geq 2]X_4[\geq 2]X_9[\geq 2]X_7[\geq 2]X_9[\geq 2]$$

We now apply (12) repeatedly to disjoint the first product (highlighted in yellow) in (18) to each of the following products as follows
S = X_0(\geq 3)X_3(\geq 3)
\lor X_2(\geq 3)X_4(\geq 3)X_7(\geq 3)
\lor X_0(\geq 3)X_3(\geq 3)X_5(\geq 3)X_6(\geq 3)
\lor X_3(\geq 3)X_4(\geq 3)X_5(\geq 3)X_6(\geq 3)X_7(\geq 3)
\lor X_2(\geq 3)X_3(\geq 3)X_4(\geq 2)X_7(\geq 3)X_8(\geq 2)
\lor X_1(\geq 2)X_2(\geq 2)X_3(\geq 3)X_5(\geq 2)X_6(\geq 2)X_7(\geq 3)
\lor X_1(\geq 2)X_3(\geq 2)X_4(\geq 2)X_6(\geq 2)X_7(\geq 2)X_9(\geq 2)
\lor X_1(\geq 2)X_2(\geq 2)X_3(\geq 3)X_4(\geq 2)X_5(\geq 2)X_7(\geq 2)X_9(\geq 2).

Equation (18) is now simplified via (16) to yield

S = X_0(\geq 3)X_3(\geq 3)
\lor X_2(\geq 3)X_4(\geq 3)X_7(\geq 3)
\lor X_3(\geq 3)X_4(\geq 3)X_5(\geq 3)X_6(\geq 3)
\lor X_2(\geq 3)X_3(\geq 3)X_5(\geq 3)X_6(\geq 3)
\lor X_2(\geq 3)X_3(\geq 3)X_4(\geq 3)X_7(\geq 3)X_8(\geq 2)
\lor X_1(\geq 2)X_2(\geq 2)X_3(\geq 2)X_5(\geq 2)X_7(\geq 3)
\lor X_1(\geq 2)X_3(\geq 2)X_4(\geq 2)X_6(\geq 2)X_7(\geq 2)X_9(\geq 2)
\lor X_1(\geq 2)X_2(\geq 2)X_3(\geq 2)X_4(\geq 2)X_5(\geq 2)X_7(\geq 2)X_9(\geq 2)
\lor X_1(\geq 2)X_2(\geq 2)X_3(\geq 2)X_4(\geq 2)X_5(\geq 2)X_7(\geq 2)X_9(\geq 2).

Equation (20) is now simplified via (16) to yield

S = X_0(\geq 3)X_3(\geq 3)
\lor X_2(\geq 3)X_4(\geq 3)X_7(\geq 3)
\lor X_3(\geq 3)X_4(\geq 3)X_5(\geq 3)X_6(\geq 3)
\lor X_3(\geq 3)X_5(\geq 3)X_6(\geq 3)X_7(\geq 3)X_8(\geq 2)
\lor X_1(\geq 2)X_2(\geq 2)X_3(\geq 2)X_4(\geq 2)X_6(\geq 2)X_7(\geq 3)
\lor X_1(\geq 2)X_2(\geq 2)X_3(\geq 2)X_4(\geq 2)X_5(\geq 2)X_7(\geq 2)X_9(\geq 2)
\lor X_1(\geq 2)X_2(\geq 2)X_3(\geq 2)X_4(\geq 2)X_5(\geq 2)X_7(\geq 2)X_9(\geq 2)
\lor X_1(\geq 2)X_2(\geq 2)X_3(\geq 2)X_4(\geq 2)X_5(\geq 2)X_7(\geq 2)X_9(\geq 2).
We continue to disjoint the third product (highlighted in yellow) in (22) with its successors

\[S = X_3 \{ \geq 3 \} X_7 \{ \geq 3 \} \]
\[\lor X_3 \{ \geq 3 \} X_4 \{ \geq 3 \} \]
\[\lor X_4 \{ \geq 3 \} X_5 \{ \geq 3 \} X_6 \{ \geq 3 \} \]
\[\lor X_3 \{ \geq 3 \} X_4 \{ < 3 \} X_6 \{ \geq 3 \} \]
\[\lor X_3 \{ \geq 3 \} X_5 \{ \geq 3 \} X_7 \{ < 3 \} X_6 \{ \geq 3 \} \]
\[\lor X \{ \geq 3 \} X_2 \{ < 3 \} X_5 \{ \geq 3 \} X_7 \{ < 3 \} X_6 \{ \geq 3 \} \]
\[(X_4 \{ < 3 \} \lor X_5 \{ \geq 3 \} X_7 \{ < 3 \} X_6 \{ < 3 \}) \]

Note that the fifth term subsumes the third, and hence is multiplied by 0 to indicate that it is absorbed. Terms highlighted in bold violet red ultimately vanish because they are multiplied by factors orthogonal to them. Equation (22) is now simplified via (16) to yield

\[S = X_3 \{ \geq 3 \} X_7 \{ \geq 3 \} \]
\[\lor X_3 \{ \geq 3 \} X_4 \{ < 3 \} X_7 \{ \geq 3 \} \]
\[\lor X_3 \{ \geq 3 \} X_5 \{ \geq 3 \} X_6 \{ \geq 3 \} \]
\[\lor X_3 \{ \geq 3 \} X_4 \{ < 3 \} X_7 \{ < 3 \} X_6 \{ \geq 3 \} \]
\[(X_4 \{ < 3 \} \lor X_5 \{ \geq 3 \} X_7 \{ < 3 \} X_6 \{ < 3 \}) \]

Next, we apply (12) repeatedly to disjoint the fourth product (highlighted in yellow) in (24) to each of the following products as follows

\[S = X_3 \{ \geq 3 \} X_7 \{ \geq 3 \} \]
\[\lor X_3 \{ \geq 3 \} X_4 \{ < 3 \} X_7 \{ \geq 3 \} \]
\[\lor X_3 \{ \geq 3 \} X_5 \{ \geq 3 \} X_7 \{ < 3 \} X_6 \{ \geq 3 \} \]
\[\lor X_3 \{ \geq 3 \} X_4 \{ < 3 \} X_5 \{ \geq 3 \} X_7 \{ < 3 \} X_6 \{ \geq 3 \} \]

(23)
\(\forall X_1 \geq 2 \forall X_2 \geq 3 X_3 \leq 3 \) \(X_4 \geq 2 \) \(X_5 \geq 2 \) \(X_6 \geq 2 \) \(X_7 \geq 2 \)
\(X_4 \geq 2 \forall X_5 \geq 2 \forall X_6 \geq 3 \) \(\forall X_7 \geq 2 \) \(X_8 \geq 2 \).

Equation (24) is now simplified via (16) to yield

\[S = X_3 \geq 3 \) \(X_4 \geq 3 \) \(X_5 \geq 3 \) \(X_6 \geq 3 \)
\(\forall X_7 \geq 3 \) \(X_8 \geq 3 \)
\(\forall X_9 \geq 3 \)
\(\forall X_1 \geq 2 \forall X_2 \geq 2 \forall X_3 \geq 2 \forall X_4 \geq 2 \forall X_5 \geq 2 \forall X_6 \geq 2 \forall X_7 \geq 2 \forall X_8 \geq 2 \forall X_9 \geq 2 \)

Now, we apply (12) repeatedly to disjoint the fifth product (highlighted in yellow) in (26) to each of the following products as follows

\[S = X_3 \geq 3 \) \(X_4 \geq 3 \) \(X_5 \geq 3 \) \(X_6 \geq 3 \)
\(\forall X_7 \geq 3 \) \(X_8 \geq 3 \)
\(\forall X_9 \geq 3 \)
\(\forall X_1 \geq 2 \forall X_2 \geq 2 \forall X_3 \geq 2 \forall X_4 \geq 2 \forall X_5 \geq 2 \forall X_6 \geq 2 \forall X_7 \geq 2 \forall X_8 \geq 2 \forall X_9 \geq 2 \)

Equation (26) is now simplified via (16) to yield

\[S = X_3 \geq 3 \) \(X_4 \geq 3 \) \(X_5 \geq 3 \) \(X_6 \geq 3 \)
\(\forall X_7 \geq 3 \) \(X_8 \geq 3 \)
\(\forall X_1 \geq 2 \forall X_2 \geq 2 \forall X_3 \geq 2 \forall X_4 \geq 2 \forall X_5 \geq 2 \forall X_6 \geq 2 \forall X_7 \geq 2 \forall X_8 \geq 2 \forall X_9 \geq 2 \]
\[v X_1 \geq 2 | x_2 \leq 2 | x_3 \geq 2, x_4 \geq 2 \]
\[v x_5 \geq 2 | x_6 \geq 2 | x_7 \geq 2, x_8 \geq 2 \]

Now, we discover in (28), (29) and (30) that the sixth, seventh and eight products (respectively highlighted in yellow) are already disjoint to each of their following products. Therefore, we jump immediately to the ninth term, highlight it in yellow and apply (12) repeatedly to it so as to disjoint it in (31) to each of the following products therein.

\[S = x_3 \geq 3 | x_7 \geq 3 \]
\[v x_4 \geq 3 | x_5 \leq 3 | x_7 \geq 3 \]
\[v x_6 \geq 3 | x_5 \leq 3 | x_7 \geq 3 | x_8 \geq 3 \]
\[v x_5 \geq 3 | x_4 \geq 3 | x_6 \leq 3 | x_7 \geq 3 | x_8 \geq 3 \]
\[v x_5 \geq 3 | x_3 \geq 3 | x_6 \leq 3 | x_7 \geq 3 | x_8 \geq 3 \]

46
Equation (31) is now simplified by omitting the term multiplied by zero (actually absorbed by the ninth term
to yield

\[
S = X_3 \geq X_7 \geq 3
\]

\[
\forall X_1 [\geq 2] X_2 [\geq 3] X_3 < 3 \quad X_4 [\geq 2] X_5 < 3 X_6 [\geq 2] X_7 [\geq 2] \quad X_9 [\geq 2]
\]

\[
\forall X_1 [\geq 2] X_2 [\geq 3] X_3 < 3 \quad X_4 \geq 2 \quad X_5 [\geq 3] \quad X_6 [\geq 2] \quad X_7 [\geq 2] \quad X_8 [\geq 2]
\]

\[
\forall X_1 [\geq 2] X_2 [\geq 2] X_3 [\geq 2] X_4 [\geq 2] X_5 [\geq 3] \quad X_6 [\geq 2] \quad X_7 [\geq 2] \quad X_9 [\geq 2]
\]

\[
\forall X_1 [\geq 2] X_2 [\geq 2] X_3 [\geq 2] X_4 [\geq 2] X_5 [\geq 3] \quad X_6 [\geq 2] \quad X_7 [\geq 2] \quad X_9 [\geq 2].
\]

(29)

\[
S = X_3 \geq X_7 \geq 3
\]

\[
\forall X_2 [\geq 3] X_3 < 3 X_7 [\geq 3]
\]

\[
\forall X_3 [\geq 3] X_5 [\geq 3] \quad X_7 < 3 \quad X_9 [\geq 3]
\]

\[
\forall X_2 [\geq 3] X_3 < 3 \quad X_5 [\geq 3] \quad X_7 [\geq 3] \quad X_9 [\geq 3]
\]

\[
\forall X_2 [\geq 2] X_3 [\geq 2] \quad X_4 [\geq 2] \quad X_7 [\geq 3] \quad X_9 [\geq 2]
\]

\[
\forall X_1 [\geq 2] X_2 [\geq 2] X_3 [\geq 2] X_4 [\geq 2] X_5 [\geq 2] \quad X_7 [\geq 3] \quad X_9 [\geq 2]
\]

\[
\forall X_1 [\geq 2] X_2 [\geq 2] X_3 [\geq 2] X_4 [\geq 2] X_5 [\geq 2] \quad X_7 [\geq 3] \quad X_9 [\geq 2]
\]

\[
\forall X_1 [\geq 2] X_2 [\geq 2] X_3 [\geq 2] X_4 [\geq 2] X_5 [\geq 3] \quad X_6 [\geq 2] \quad X_7 [\geq 2] \quad X_9 [\geq 2].
\]

(30)
Equation (33) is now simplified to yield

\[S = X_3 \geq 3 X_7 \geq 3 \]
\[v X_2 \geq 3 X_3 \geq 3 X_7 \geq 3 \]
\[v X_3 \geq 3 X_3 \geq 3 X_5 \geq 3 X_7 \geq 3 \]
\[v X_4 \geq 2 X_4 \geq 2 X_7 \geq 3 X_7 \geq 2 \]
\[v X_5 \geq 2 X_5 \geq 2 X_7 \geq 2 X_7 \geq 3 X_7 \geq 2 \]
\[v X_6 \geq 2 X_6 \geq 2 X_7 \geq 2 X_7 \geq 2 X_7 \geq 2 \]
\[v X_7 \geq 2 \]

Now, we apply (12) repeatedly to disjoint the tenth product (now highlighted in yellow) in (33) to each of the following products as follows

\[S = X_3 \geq 3 X_7 \geq 3 \]
\[v X_2 \geq 3 X_3 \geq 3 X_7 \geq 3 \]
\[v X_3 \geq 3 X_3 \geq 3 X_5 \geq 3 X_7 \geq 3 \]
\[v X_4 \geq 2 X_4 \geq 2 X_7 \geq 3 X_7 \geq 2 \]
\[v X_5 \geq 2 X_5 \geq 2 X_7 \geq 2 X_7 \geq 3 X_7 \geq 2 \]
\[v X_6 \geq 2 X_6 \geq 2 X_7 \geq 2 X_7 \geq 2 X_7 \geq 2 \]
\[v X_7 \geq 2 \]

Equation (33) is now simplified to yield

\[S = X_3 \geq 3 X_7 \geq 3 \]
\[v X_2 \geq 3 X_3 \geq 3 X_7 \geq 3 \]
\[v X_3 \geq 3 X_3 \geq 3 X_5 \geq 3 X_7 \geq 3 \]
\[v X_4 \geq 2 X_4 \geq 2 X_7 \geq 3 X_7 \geq 2 \]
\[v X_5 \geq 2 X_5 \geq 2 X_7 \geq 2 X_7 \geq 3 X_7 \geq 2 \]
\[v X_6 \geq 2 X_6 \geq 2 X_7 \geq 2 X_7 \geq 2 X_7 \geq 2 \]
\[v X_7 \geq 2 \]

JAMCS, 36(2): 37-56, 2021; Article no.JAMCS.65967
$$\forall X_1(\geq 2) X_2(2) X_3(< 2) X_4(\geq 2) X_5(\geq 2) X_6(\geq 2) X_7(\geq 2) X_9(\geq 2)$$
$$\forall X_1(\geq 2) X_2(\geq 3) X_3(< 2) X_4(\geq 2) X_5(\geq 2) X_7(\geq 2) X_9(\geq 2)$$
$$\forall X_1(\geq 2) X_2(\geq 3) X_3(\geq 3) X_4(\geq 2) X_5(\geq 2) X_7(\geq 2) X_9(\geq 2)$$
$$\forall X_1(\geq 2) X_2(\geq 2) X_3(\geq 3) X_4(\geq 2) X_5(\geq 2) X_7(\geq 2) X_9(\geq 2)$$
$$\forall X_1(\geq 2) X_2(\geq 2) X_3(\geq 3) X_4(\geq 2) X_5(\geq 3) X_6(\geq 2) X_7(\geq 2) X_9(\geq 2)$$

(34)

Now, we apply (12) repeatedly to disjoint the eleventh product (now highlighted in yellow) in (35) to each of the following products as follows

$$S = X_3(\geq 3) X_7(\geq 3)$$
$$\forall X_3(\geq 3) X_7(\geq 3) X_9(\geq 3)$$
$$\forall X_3(\geq 3) X_7(\geq 3) X_9(\geq 3) X_3(\geq 3) X_7(\geq 3) X_9(\geq 3)$$
$$\forall X_3(\geq 3) X_7(\geq 3) X_9(\geq 3) X_3(\geq 3) X_7(\geq 3) X_9(\geq 3) X_3(\geq 3) X_7(\geq 3) X_9(\geq 3)$$
$$\forall X_3(\geq 3) X_7(\geq 3) X_9(\geq 3) X_3(\geq 3) X_7(\geq 3) X_9(\geq 3)$$

Equation (35) is now simplified to yield

$$S = X_3(\geq 3) X_7(\geq 3) X_9(\geq 3)$$
$$\forall X_3(\geq 3) X_7(\geq 3) X_9(\geq 3) X_3(\geq 3) X_7(\geq 3) X_9(\geq 3)$$
$$\forall X_3(\geq 3) X_7(\geq 3) X_9(\geq 3) X_3(\geq 3) X_7(\geq 3) X_9(\geq 3) X_3(\geq 3) X_7(\geq 3) X_9(\geq 3)$$
$$\forall X_3(\geq 3) X_7(\geq 3) X_9(\geq 3) X_3(\geq 3) X_7(\geq 3) X_9(\geq 3) X_3(\geq 3) X_7(\geq 3) X_9(\geq 3)$$
$$\forall X_3(\geq 3) X_7(\geq 3) X_9(\geq 3) X_3(\geq 3) X_7(\geq 3) X_9(\geq 3) X_3(\geq 3) X_7(\geq 3) X_9(\geq 3)$$

Now, we apply (12) repeatedly to disjoint the twelfth product (now highlighted in yellow) in (37) to each of the following products as follows

$$S = X_3(\geq 3) X_7(\geq 3)$$
\[S = X_3 \geq 3 \]
\[\begin{align*}
\checkmark & \quad X_1(\geq 2)X_2(\geq 3)X_3(\geq 2)X_4(\geq 3)X_5(\geq 2)X_7(\geq 2)X_9(2) \\
\checkmark & \quad X_1(\geq 2)X_2(2)X_3(\leq 2)X_4(\geq 2)X_5(\leq 2)X_7(\geq 2)X_9(2) \\
\checkmark & \quad X_1(\geq 2)X_2(\geq 3)X_3(\leq 2)X_4(\geq 3)X_5(\leq 2)X_7(2)X_9(\geq 2) \\
\checkmark & \quad X_1(\geq 2)X_2(\geq 3)X_3(\leq 2)X_4(\geq 2)X_5(\leq 3)X_7(\geq 2)X_9(2) \\
\checkmark & \quad X_1(\geq 2)X_2(\geq 3)X_3(\leq 2)X_4(\geq 2)X_5(\leq 3)X_7(2)X_9(\geq 2) \\
\checkmark & \quad X_1(\geq 2)X_2(\geq 2)X_3(\geq 3)X_4(\geq 2)X_5(\geq 3)X_7(\geq 2)X_9(2)X_9(2)(0).
\end{align*} \] (39)

Equation (39) is now simplified to yield the following equation (40), in which the remaining terms are mutually disjoint, and hence it is the desired PRE formula, which transforms, on a one-to-one basis into an expectation formula or network reliability by replacing each logic symbol by its expectation, and replacing the OR and AND operation by arithmetic addition and multiplication. Table 2 compares our initial expression (17) and final expression (40). The 8 terms in (17) have been replaced by \(1+1+1+1+2+3+6 = 16\) terms. In a sense, expression (17) remains ‘shellable’ up to its fifth term, while the sixth term was split into two terms, and the last two terms were replaced by three and six terms, respectively. The final multiplying factors introduced gradually via (12) and adjusted via (16) are distinguished in bold red in the right column of Table 2. What remains in black in this column is the variable instances that remained intact within a term.

Table 3 presents the gradual evolution of the lower and upper bounds of the expectation of system success, where we take the expectation of the sum of terms up to the highlighted one as a lower bound, and take the expectation of the sum of all terms as an upper bound. The two bounds finally converge to the same value, which agrees with (but is substantially more precise than) the result of 0.981902 reported in [1]. Correctness of the symbolic reliability corresponding to formula (40) might be validated via the tests in Rushdi [43].

\[S = X_3(\geq 3)X_7(\geq 3) \checkmark X_2(\geq 3)X_4(\leq 3)X_5(\leq 3)X_9(\geq 3) \checkmark X_2(2)X_3(2)X_4(\geq 2)X_7(\geq 3)X_9(\geq 2) \checkmark X_1(\geq 2)X_2(2)X_3(2)X_4(\leq 2)X_7(\geq 2)X_9(\leq 2) \checkmark X_1(\geq 2)X_3(2)X_4(\geq 2)X_7(\geq 2)X_9(\geq 2) \checkmark X_1(\geq 2)X_4(\geq 2)X_7(\geq 2)X_9(\geq 2) \checkmark X_1(\geq 2)X_3(2)X_4(\leq 2)X_7(\geq 2)X_9(\leq 2) \checkmark X_1(\geq 2)X_2(2)X_3(2)X_4(\leq 2)X_5(\geq 2)X_7(\geq 2)X_9(\geq 2) \checkmark X_1(\geq 2)X_3(2)X_4(\leq 2)X_7(\geq 2)X_9(\leq 2) \checkmark X_1(\geq 2)X_4(\leq 2)X_7(\geq 2)X_9(\leq 2) \checkmark X_1(\geq 2)X_4(\geq 2)X_7(\geq 2)X_9(\leq 2) \checkmark X_1(\geq 2)X_4(\leq 2)X_7(\leq 2)X_9(\leq 2) \checkmark X_1(\geq 2)X_4(\geq 2)X_7(\leq 2)X_9(\leq 2) \checkmark X_1(\geq 2)X_4(\leq 2)X_7(\leq 2)X_9(\leq 2) \checkmark X_1(\geq 2)X_4(\geq 2)X_7(\geq 2)X_9(\leq 2)X_9(2)X_9(2). \] (40)
We are currently investigating other alternative techniques for obtaining the required multi-
value that was obtained earlier by an alternative means.

The running example used for demonstrating PRE derivation in this paper is admittedly long and tedious. This concept is of paramount importance since it allows a direct transformation of a random logical expression, on a one-to-one one, to its statistical expectation form, simply by replacing all logic variables by their statistical expectations, and also substituting arithmetic multiplication and addition for their logical counterparts (ANDing and ORing). We presented a general method for creating a symbolic multi-state PRE. The proposed method is illustrated with a detailed symbolic example of a real-
state delivery network. Our method produced a more precise version of the same numerical value that was obtained earlier by an alternative means.

The running example used for demonstrating PRE derivation in this paper is admittedly long and tedious. However, this example is very valuable from the pedagogical point of view, since it reveals many subtle points in the analysis. We are currently investigating other alternative techniques for obtaining the required multi-state reliability or success expectation. Use of the Inclusion-Exclusion (IE) Principle per se is out of question due to its exponential complexity. However, a factored IE method might prove fruitful when used in conjunction with a

6 Conclusions

We successfully imported the concept of a ‘probability-ready expression’ (PRE) from the two-valued logical domain to the multi-valued logical domain. This concept is of paramount importance since it allows a direct transformation of a random logical expression, on a one-to-one one, to its statistical expectation form, simply by replacing all logic variables by their statistical expectations, and also substituting arithmetic multiplication and addition for their logical counterparts (ANDing and ORing). We presented a general method for creating a symbolic multi-state PRE. The proposed method is illustrated with a detailed symbolic example of a real-case study of a multi-state delivery network. Our method produced a more precise version of the same numerical value that was obtained earlier by an alternative means.

The running example used for demonstrating PRE derivation in this paper is admittedly long and tedious. However, this example is very valuable from the pedagogical point of view, since it reveals many subtle points in the analysis. We are currently investigating other alternative techniques for obtaining the required multi-state reliability or success expectation. Use of the Inclusion-Exclusion (IE) Principle per se is out of question due to its exponential complexity. However, a factored IE method might prove fruitful when used in conjunction with a
limited-scope PRE derivation. A promising alternative is to attain multi-state PRE derivation through the use of the Boole-Shannon Expansion, which is essentially the essence of the celebrated RDSP method.

Competing Interests

Authors have declared that no competing interests exist.

References

© 2021 Rushdi and Amashah; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
http://www.sdiarticle4.com/review-history/65967