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Abstract 

 
Transmission errors are commonplace in communication systems. Wireless sensor networks like many other 

communication systems are susceptible to various forms of errors arising from sheer noise, heat and 

interference in sensor circuitry and from other forms of distortions. Research efforts in WSN have attempted 

to guarantee reliable and accurate data transmission from a target environment in the midst of these unwanted 

exposures. Many techniques have appeared and employed over the years to deal with the issue of 

transmission errors in communication systems. In this paper we present a new approach for single and 

multiple error control in WSN relying on the inherent fault tolerant feature of the Redundant Residue Number 

System. As an off shoot of Residue Number System, RRNS's fault tolerant capabilities help in building robust 

systems required for reliable data transmission in WSN systems. The Chinese Remainder Theorem and the 

Manhattan Distance Heuristics are used during the integer recovery process when detecting and correcting 

error digit(s) in a transmitted data. The proposed method performs considerably better in terms of data 

retrieval time than similar approaches by needing a smaller number of iterations to recover an originally 
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transmitted data from its erroneous form. The approach in this work is also less computationally intensive 

compared to recent techniques during the error correction steps. Evidence of utility of the technique is 

illustrated in numerical examples. 

 

 

Keywords: Residue number system; error control; wireless sensor network; transmission error. 

 

1 Introduction 

 
Wireless sensor network (WSN) is an ensemble of many tiny intelligent sensing agents that run on low capacity 

batteries. WSN has gained widespread application especially for remote data sensing and transmission in both 

accessible and inaccessible environments. WSN has thus far been deployed in areas such as environmental 

monitoring, health-care, transportation, structural health monitoring, water and air quality monitoring and many 

other areas. Many of these environments are hash causing either a rapid depletion of the already limited energy 

resource or degenerating the quality of the transmitted data especially when a robust and efficient 

communication protocol is absent. At worse, wireless links in WSN suffer from packet loses, making reliability 

of packet delivery difficult to achieve. Moreover, because the transmission strength of sensor nodes is limited, 

sensed data are often delivered to target user bases via lossy paths, further diminishing the reliability of the data 

delivery. Many conventional techniques have been applied to improve transmission reliability in communication 

systems including in WSN to varying degrees of success. Transmission control protocol and 

retransmission/acknowledgment (ACK) are traditionally used in the transport layer and media access control 

(MAC) layer respectively. Reed-Solomon (RS) code offer reduce transmission overhead by allowing a receiver 

to decode the original data using a received fixed number of encoded data. 

 

Opportunistic coding, ruby transform and tornado code have been applied as coding based reliable packet 

delivery mechanisms. The specific hurdle with building reliable data transmission schemes for WSN is the 

limitation in the battery capacity of sensor nodes. Replacing these batteries in some deployment areas is difficult 

or dangerous or even wholly impossible to do. A fine balance is required therefore for two of the important 

design metrics in wireless communication systems; link reliability and reduced power dissipation. A meaningful 

reliability scheme needs to pay attention to the longevity of the battery base of the sensor nodes as well as the 

reliability of data delivery. Exiting schemes that rely on capping node's transmission power as a node saving 

technique suffer from unreliable links many times. Similarly, schemes that enforce step-wise node activity 

suffer from packet drops and retransmissions. The fact that several retransmission requests might be made of an 

erroneous message makes it unsuited to the efficient energy needs for WSN. It is opined by [1] that, the cost of 

transmitting a bit of information is equal to the cost of processing thousand sensor related jobs. Consequently, 

the need for possible several retransmissions causes enormous amount of energy dissipation in sensor nodes 

making it not ideal to control errors in WSN. The need arises therefore to generate an energy efficient and 

reliable packet delivery scheme for WSN. The coding method used here is based on RRNS designed to control 

erroneous transmission and offer reliability in data transmission with specific application interest in WSN. 

Redundant RNS provides favourable reliability requirements due to its streamlined parallel processing ability. 

Additionally, it’s borrow-free and carry-free features benefits error control efforts since errors present in one 

modulus are not propagated to others [2]. These favourable capabilities in the RRNS have been utilized in 

electronic and communications systems to improve performance and reliability [3] in application areas such as 

wireless local area network, space-time block codes, multicarrier modulation, cloud storage services and 

wireless sensor network [4]. The research interest in this work is thus to offer a reliable approach to deal with 

and recover to original forms errors that creep into transmitted data in wireless networks in general and specially 

in wireless sensor networks. 

 

2 Review of Related Literature  
 

Error detection and control techniques are an important means for reliable signal transmission in communication 

systems. Error detection and error correction are therefore important tasks that are required to be performed 

when communication takes place between network nodes. Error correction in digital system such as WSN are 

enabled by a number of methods including the Redundant Residue Number System; a number system that 

extends the RNS. Authors in [5] employed the properties of RNS and noticed its inherent benefits for high speed 

operations in computing applications. The added advantage when an adequate amount of redundancy is added is 
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that, it is able to correct arithmetic processing errors from many sources including transmission and storage 

noise [6]. The telling reason is that, the carry feature is not present in RNS; thus, errors in one residue position 

are confined and are not propagated from one residue to the other offering great speed as a result. Additionally, 

residue positions are insignificant with respect to each other, allowing an integer value to be computed from 

remaining residues when some redundant residues are lost. 

 

The first proposal for error correction using RRNS appears in [7]. The method corrects single-bit error in 

binary-coded residues. The error correction approach in [7] however, is lengthy and offers no real multiple error 

correction benefits beyond a single error. A rather complex method is presented in [5] that is capable of single 

residue error correction. The breakthrough in self-checking computations based on residue arithmetic appeared 

however in [8]. The authors presented a table-based method for correcting single residue-error. Restrictive 

sufficient and necessary conditions constraining moduli selection for error correction are required coupled with 

the huge memory requirements of the correction table. Their method thus becomes impractical for multiple error 

correction. The implementation of a table-based error correction was eliminated in [9] using approximate 

computations. Earlier to the work of [9], the work in [10] demonstrated that it is possible to spot and correct a 

single residue-error based on the basic rule of using two redundant moduli. Mandelbaum op. cit., posited that a 

RRNS with 𝑟 redundant moduli will detect and correct ⌊𝑟 2⁄ ⌋ errors, where ⌊∅⌋ is the largest integer such that 

⌊∅⌋ ≤ ∅. The codes in [10] utilized the Chinese Remainder Theorem and were considered only efficient for 

single-error correction and not applicable to multiple errors control. Multiple errors correction technique is 

presented in an extended work by same authors, by means of the continued fractions and Euclid's algorithms 

premised on some sufficiently provided conditions. The work in [11] brought to the limelight the error 

correcting properties of RRNS and popularized the concepts of legitimate and illegitimate range. They presented 

proof to conditions necessary and sufficient for correcting errors in a legitimate number. They also offered a 

procedure to detect and correct errors upon the determination of whether a number is legitimate or illegitimate 

[3,12] and based upon the values of projections derived from redundant RNS. They further showed that an 

introduction of a single digit error into a legitimate number, 𝑋  will transform it (the number) into another 

number in the illegitimate range of the RRNS.  

 

Single error correction procedures are presented in [13] using modulo projections. In [14] an algorithm is 

presented for scaling and detecting and correcting single digit error by building a lookup table with redundant 

digits of MRC. Error detection and correction using moduli set with common factors is presented in [15]. 

Methods that are based on RRNS requires forward conversion and backward conversion. These are crucial to 

the error detection and correction schemes that are based on RRNS. Mixed radix conversion (MRC) and Base 

extension (BEX) have been used with RRNS in checking residue number errors in digital signal processing 

application [3] arising from efficient pipelining architectures. The authors in [16] employed Chinese Remainder 

Theorem (CRT) to decode received residues into their integer equivalent. They extended their work to control 

multiple errors in RRNS codes in a later research. In both researches, no architecture was provided for forward 

and reverse conversion. The modulo operation involving a large M makes the approach in [16] computationally 

intensive. An architecture for a single residue digit error correction and multiple residue digits' error correction 

appear in [17]. [18] proposes a method for decoding RRNS codes using the matrix method proposed in [19] and 

modulo projection. The scheme in [18] is applicable to multiple error detection and correction but the 

procedures use of the mixed radix method may slow the encoding process. In recent past, RRNS has been 

applied to achieve fault tolerance in communication systems for reliable transmission; data encryption and 

compression; and in cryptographic and stenographic schemes [20,21]. The high degree of computational 

parallelism and carry-free operations inherent in the system offers new avenue for energy efficiency, for 

example in sensor nodes, data security, increased data transfer rate, and better data storage. In [22], some insight 

is given into the applicability of RNS in WSN. The authors claim to have achieved in their studies reduced 

traffic rate in wireless sensor network with decrease amount of data transmission and by extension, a reduction 

in power consumption of sensor nodes. The work in [22] also offered error detection and correction steps for 

single errors. However, multiple error correction was not confirmed in their work. [23] suggested a novel 

method for single error detection and correction in digital communication systems using MRC and single 

consistency check. [24] applied RNS for energy efficient channel coding of physiological signals in Wireless 

Body Area Networks (WBAN) with the design goal of achieving low power consumption through the avoidance 

of retransmissions. The authors presented a reverse converter for a 5𝑛 bit moduli set {2𝑛 + 3, 2𝑛 + 1, 2𝑛, 2𝑛 −
1, 2𝑛 − 3} based on the Mixed Radix conversion technique. In addition to the low energy consumption gains, 

the use of RNS according to the authors allowed bust errors in WBAN to be handled even though no algorithm 

was presented in that regard. [25] presented a highly secured data encryption and decryption scheme for 
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enhancing the traditional Huffman's method using RNS. The scheme in [25] uses 6 channel moduli set made up 

of four information moduli; {2𝑛−1, 2𝑛 − 1, 2𝑛 + 1, 2𝑛+1 − 1} and two redundant moduli; {22𝑛 − 3, 22𝑛 + 1} 
for purposes of error control. The scheme was demonstrably cost efficient in terms of data transmission and 

storage. It (the scheme) however, is not applicable for odd values of 𝑛, which generated a non-relatively prime 

set of moduli. [26] presents a novel LZW-RNS compression scheme based on the traditional moduli set 
{2𝑛 − 1, 2𝑛 , 2𝑛 + 1} . The scheme therein performed better compared to the traditional LZW algorithm in 

aspects of compression efficiency, security, and execution time. The scope of the work did not include error 

detection and correction. An extension of the work in [26] appears in [27] that supports single error correction in 

encrypted and compressed data. An additional layer of security is enforced in their method by constraining the 

encoding and decoding processes to only work for even values of 𝑛. [28] extends the work of [23] with a 

multiple error detection, location and correction algorithm using MRC and double consistency check.  

 

Salifu and Gbolagade [29] offered a single error detection and correction scheme based on the redundant residue 

number system using the 6n dynamic range moduli set {22𝑛 + 1, 2𝑛+1 + 1, 2𝑛+1 − 1, 2𝑛 + 1, 2𝑛} . Since 

communications systems are exposed to more than just single error, their scheme is limited in detecting and 

correcting multiple errors. The complexity of their architecture limits it performance gains because of the 

presence of the two moduli, {2𝑛+1 + 1, 2𝑛+1}. [30] applied RNS to the Lempel-Ziv-Welch data compression 

algorithm. The authors touted the efficiency of their scheme than the traditional LZW compression in terms of 

security, compression efficiency, speed of execution, and fault tolerance. The research proposed a forward 

conversion architecture based on the moduli set, {2𝑛 − 1, 2𝑛 , 2𝑛 + 1, 22𝑛 + 1, 22𝑛 − 3}. The presence of two 

2𝑘+1 type moduli potentially increase the hardware complexity of their error recovery process. Additionally, a 

reverse converter was not generated. Also, the error detection and correction scheme they proposed applied only 

to single error. Recently, [31] extended the work in [30] and [29] by generating error detection and handling 

procedure that allowed both single and multiple residue errors to be detected and corrected. The procedure in 

[31] was designed for application in stenographic and cryptographic systems, nonetheless. A reverse converter 

base on the traditional CRT was also presented unlike in both [30] and [29] where no reverse conversion 

architectures were suggested. The downside to the scheme in [31] is that, the integer recovering process requires 

a substantial number of iterations of at most 𝐶𝑡
𝑛, consequently reducing the data retrieval speed. This work 

herein presents an improvement in the error detection and correction research in communication systems with 

emphasis on its application in WSN. The goal particularly is to offer a mechanism that minimizes the data 

recovery time.  

 

2.1 Background of residue number system 

 
Residue Number Systems (RNS) has its roots in the ancient book of Sun Tzu [31]. Its revival however started in 

the 1950s, as an alternative number system for applications requiring fast arithmetic and fault-tolerant 

operations [22]. The RNS encodes a number as a set of its remainders with respect to a specified set of relatively 

prime moduli. Many of its innate features make it useful and attractive for special-purpose computations. For 

example, RNS provides no carry mechanism, allowing addition and multiplication to be done in parallel with no 

interaction between digits. Also, the allowance of parallel and carry-free computations offers the benefit of fast 

arithmetic operations when compared with straight binary encoding [5]. Furthermore, because residues reveal no 

weight information, error in any of the residue positions is not propagated to other digit positions. 

 

RNS also offers some useful properties for error detection and correction in computerized systems. These and 

many of its inherent features helps in building fault tolerant systems required of many data communications 

systems including in digital filtering, convolution, Discrete Cosine Transform, communication engineering, 

cryptography, image processing and speech processing and stenography schemes [32,33,21,22]. Others 

beneficiary areas of application of RNS are; direct digital frequency synthesis, Discrete Fourier Transform and 

Fast Fourier Transform [3]. Some bottlenecks however still exist that limits the general implementation of RNS 

especially in general purpose computing. A residue number system is defined by a set of pair-wise relatively 

prime integers called the moduli set. The moduli set is denoted as {𝑚1, 𝑚2, … ,𝑚𝑛},  𝑖 = 1, 2, … , 𝑛  that 

𝐺𝐶𝐷 (𝑚𝑖 , 𝑚𝑗) = 1 for 𝑖 ≠ 𝑗, where 𝐺𝐶𝐷 (𝑚𝑖, 𝑚𝑗) means the greatest common divisor of 𝑚𝑖 and 𝑚𝑗 . A given 

RNS is capable of uniquely representing all integers that lie in its dynamic range, 𝑀 [34] given in Equation 1. 

Given the moduli set {𝑚1, 𝑚2, … ,𝑚𝑛}, the dynamic range for positive integers is denoted in Equation (1) and 

corresponds to a range of all positive integers from 0 to 𝑀 − 1. 
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𝑀 = ∏𝑚𝑖

𝑛

𝑖=1

                                                                                                                                                           (1) 

 

Encoding a decimal number into an RNS code (called forward conversion) is often not a challenge. However, 

many applications based on RNS require data in residue representation to be converted to a weighted number 

system - binary or decimal - in order for the encoded data to be used. The typical structure of an RNS processor 

that supports conversion from conversional number system (CNS) - binary or decimal - to an RNS number is 

shown in Fig. 1 below.  
 

 
 

Fig. 1. Structure of an RNS processor 
 

There are many techniques used to achieve RNS to weighted number systems conversion. The popular ones are 

the Chinese Remainder Theorem and the Mixed Radix Conversion [15,35,34]. The Chinese Remainder 

Theorem (CRT) is defined as follow; Given a moduli set {𝑚1, 𝑚2, … ,𝑚𝑛}, an equivalent decimal integer 𝑋 can 

be derived from its residues {𝑥1, 𝑥2, … , 𝑥𝑛} using the CRT as follows: 
 

𝑋 = |∑𝑀𝑖|𝑥𝑖𝑀𝑖
−1|𝑚𝑖

𝑛

𝑖=1

|

𝑀

                                                                                                                                   (2) 

 

Where, 𝑀 is given as in Equation (1); 𝑀𝑖 = 
𝑀
𝑚𝑖
⁄ ;  |𝑀𝑖

−1𝑀𝑖|𝑚𝑖 = 1. 

 

2.2 Background of redundant residue number system 

 
Redundant Residue Number System (RRNS) is an extension of RNS which is engineered by having extra 

residues added to an original information residue set. Because of this, RRNS inherent the capabilities of RNS 

especially in relation to fault tolerance in addition to the provision of error detection and correction benefits. In 

both RNS and RRNS, the Chinese Reminder Theorem is commonly applied to recover received data bits so as 

to determine the presence or otherwise of error(s). The foundation of RRNS starts with a selection of a set of 𝑛 

pairwise relatively prime positive integers {𝑚1, 𝑚2, … ,𝑚𝑘 , … ,𝑚𝑘+𝑟}, chosen such that, the greatest common 

divisor, 𝐺𝐶𝐷 (𝑚𝑖 , 𝑚𝑗) = 1 for each pair of 𝑖  and 𝑗 such that 𝑖 ≠ 𝑗, and 𝑚1 < 𝑚2 < ⋯ < 𝑚𝑘 < 𝑚𝑘+1 < ⋯ <

𝑚𝑛. From this set of 𝑛 moduli, the first 𝑘 moduli form a set of non-redundant moduli while the remaining 𝑟 =
𝑛 − 𝑘 moduli form the set of redundant moduli. The redundant parts are used for error detection and correction 

[16]. The residue digits {𝑥1, 𝑥2, … , 𝑥𝑘} are the redundant residue digits whereas {𝑥𝑘+1, 𝑥𝑘+2, … , 𝑥𝑘+𝑟} are the 

redundant residue digits. An RRNS number therefore is represented by a total of 𝑟 + 𝑘 residue digits. The 

product of the non-redundant moduli set form the legitimate range, [0,   𝑀𝑘) and the product of the remaining 

𝑛 − 𝑘  redundant moduli form the illegitimate range, [𝑀𝐾 ,   𝑀𝑅)  Both 𝑀𝐾  and 𝑀𝑅  can be computed using 

Equation (1). The total range, [0;𝑀𝑇), defines the set of states represented by the RRNS and is given as; 
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𝑀𝑇 = 𝑀𝐾 ×𝑀𝑅                                                                                                                                                     (3) 
 

Given any integer 𝑋 in the range of [0;𝑀), where 𝑀 is as in Equation (1), 𝑋 can be uniquely represented as a 

residue vector 𝑥 = {𝑥1, 𝑥2, … , 𝑥𝑛}. Each of the residues 𝑥𝑖 corresponds to 𝑋 modulo 𝑚𝑖 such that 0 ≤ 𝑥𝑖 < 𝑚𝑖. 

However, for error correction to work, 𝑋 has to be selected from the range of [0,𝑀𝐾) instead, where 𝑀𝐾  is 

computed from Equation (1) [25,36]. Thus, the residue vector 𝑋 can be divided into two parts, namely the first 𝑘 

residues called information residues and the remaining r residues called redundant residues [17]. Given a residue 

vector {𝑥𝑖}𝑖=1,𝑛, the corresponding integer 𝑋 can be uniquely determined by simultaneously solving all n linear 

congruences [11]. The problem of simultaneously solving a set of 𝑛 linear congruences is simplified by using 

Equation (2). 

 

3 Methodology  

 
3.1 Proposed forward converter for {𝟐𝒏 − 𝟏, 𝟐𝒏, 𝟐𝒏+𝟏 − 𝟏, 𝟐𝟐𝒏 − 𝟑, 𝟐𝟐𝒏 + 𝟏, } 
 
At the outset, the proposed RNS-based transmission scheme for WSN requires a sensed attribute value (for 

simplicity sake we will use an integer value for demonstration) to be encoded in RNS representation with 

respect to a given moduli set. This process is referred to as forward conversion. With regard to the moduli set in 

used, the first three represents the information moduli and the remaining two (referred to as the redundant 

moduli) is added for purposes of error detection and correction. 

 

Given the moduli set {2𝑛 − 1, 2𝑛 , 2𝑛+1 − 1, 22𝑛 − 3, 22𝑛 + 1}, ∀ 𝑛 > 1 and even, an integer 𝑋 of width 3𝑛 +
 1, can be represented in binary as follows; 

 

X →  𝑋3𝑛…𝑋2𝑛⏟      
𝐵3, 𝑛+1 𝑏𝑖𝑡𝑠

| 𝑋2𝑛−1…𝑋𝑛⏟      
𝐵2,𝑛 𝑏𝑖𝑡𝑠

|𝑋𝑛−1…𝑋0 ⏟      
𝐵1,𝑛 𝑏𝑖𝑡𝑠

                                                                                                        (4) 

 

Where, 𝐵1, 𝐵2 and 𝐵3 are binary numbers given as: 

 

𝐵1 = ∑𝑥𝑖2
𝑖

𝑛−1

𝑖=0

, 

 

𝐵1 = ∑ 𝑥𝑖2
𝑖−𝑛

2𝑛−1

𝑖=𝑛

                                                                                                                                                     (5) 

 

𝐵1 = ∑ 𝑥𝑖2
𝑖−2𝑛

3𝑛

𝑖=2𝑛

. 

 

Thus, 𝑋 can be computed as; 

 

𝑋 =  𝐵1 + 2
𝑛𝐵2 + 2

2𝑛𝐵3                                                                                                                                    (6) 
 

The residues of 𝑋  w.r.t to the moduli set; {2𝑛 − 1, 2𝑛 , 2𝑛+1 − 1, 22𝑛 − 3, 22𝑛 + 1, } , can be derived as 

follows: 

 

𝑥1 = |𝑋|𝑚1  

 

= ||𝐵1|2𝑛−1 + |2
𝑛𝐵2|2𝑛−1 + |2

2𝑛𝐵2|2𝑛−1|2𝑛−1 
 

= |𝐵1 + 𝐵2 + 𝐵3|2𝑛−1                                                                                                                                         (7) 
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𝑥2 = |𝑋|2𝑛, 

 

      = ||𝐵1|2𝑛 + |2
𝑛𝐵2|2𝑛 + |2

2𝑛𝐵3|2𝑛|2𝑛 ,     
 

       = |𝐵1|2𝑛, 

 

      = 𝐵1.                                                                                                                                                                   (8) 
 

𝑥3 = |𝑋|2𝑛+1−1 

 

      = ||𝐵1|2𝑛+1−1 + |2
𝑛𝐵2|2𝑛+1−1 +            |2

2𝑛𝐵3|2𝑛+1−1|2𝑛+1−1  

 

      = |𝐵1 + 2
𝑛𝐵2 + 2

𝑛−1𝐵3|2𝑛+1−1 

 

      =  |𝐵 + 2𝑛−1𝐵3|2𝑛+1−1 

 

 = |𝐵 + 𝐵𝐵|2𝑛+1−1.                                                                                                                                            (9) 
 

𝑥4 = |𝑋|22𝑛−3 

 

= ||𝐵1|22𝑛−3 + |2
𝑛𝐵2|22𝑛−3 +           |2

2𝑛𝐵3|22𝑛−3|22𝑛−3     
 

= |𝐵1 + 2
𝑛𝐵2 + 3𝐵3|22𝑛−3 

 

= |𝐵 + 3𝐵3|22𝑛−3.                                                                                                                                                (10) 
 

𝑥5 = |𝑋|22𝑛+1 

 

      = ||𝐵1|22𝑛+1 + |2
𝑛𝐵2|22𝑛+1 +            |2

2𝑛𝐵3|22𝑛+1|22𝑛+1    

 

       = |𝐵1 + 2
𝑛𝐵2 + (−𝐵3)|22𝑛+1 

 

      = |𝐵 + (−𝐵3)|22𝑛+1.                                                                                                                                      (11) 
 

Where; 

 

𝐵 =  𝐵1 + 2
𝑛𝐵2  = 𝐵1 ⟡ 𝐵2,  where ⟡ is defined as 𝐵1 concatenation 𝐵2 

 

    =  𝐵2,𝑛−1…𝐵2,0⏟        
𝑛

𝐵1,𝑛−1…𝐵1,0⏟        
𝑛⏟                

2𝑛

.                                                                                                                        (12) 

 

𝐵𝐵 =   𝐵3,1𝐵3,0𝐵3,𝑛…𝐵3,2⏟            
𝑛+1

.                                                                                                                             (13) 

 

From Fig. 2, a given number 𝑋 is partitioned into three-bit blocks (as in Equation 4) using a bits partitioning 

unit. Residues 𝑥1 is computed using an 𝑛 𝑏𝑖𝑡 wide Carry Save Adder to generate a partial sum 𝑠1 and a carry 𝑐1 

which are then added using another 𝑛 𝑏𝑖𝑡  wide Carry Propagate Adder.  The residue 𝑥2  from Equation (8) 

represents the 𝑛 least significant bits of the binary form of X, which is equivalent to 𝐵1. Therefore, computing 

requires no hardware utilization. Residues 𝑥3  is computed by adding the results of concatenation and shift 

operations (both of which requires no additional hardware use) using a 𝑛 + 1 𝑏𝑖𝑡 Carry Propagate Adder. The 

redundant residues 𝑥4  and 𝑥5  are computed by a concatenation operation and a modulo addition operation 

(requiring 2𝑛 𝑏𝑖𝑡 and 2𝑛 + 1 𝑏𝑖𝑡 wide CPAs). From the preceding, the Area of the proposed forward converter 

is estimated at (7𝑛 + 2)∆𝐹𝐴. Whiles the Delay is estimated at (4𝑛 + 2)𝑡𝐹𝐴 since the implementation is done in 

parallel. 
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Fig. 2. Forward conversion architecture for the proposed scheme 

 

3.1.1 Numerical example 

 

Given the information moduli set, {2𝑛 − 1,   2𝑛, 2𝑛+1 − 1} and a sense attribute value (given in integer) 𝑋 =
 23, the forward conversion process is as follows; 

 

Let 𝑛 =  2. Consequently, the moduli set is reduced to {3,   4, 7}.  
 

Next 23 is converted into binary representation which gives 00101112 . Since 𝑛 =  2 and 𝑋 is 3𝑛 +  1 bits 

wide number, we partition 𝑋 into two 2-bits blocks and one 3-bit block. Thus, 𝐵1 = 11, 𝐵2 = 01 𝑎𝑛𝑑 𝐵3 =
001. 

 

From Equation (7),  

 

𝑥1 = |𝐵1 + 𝐵2 + 𝐵3|2𝑛−1           
 

     =  |(11)2 + (01)2 + (001)2|3 

 

     =  |3 +  1 + 1|3 

 

     = 2 

 

From Equation (8),  

 

𝑥2 = |𝐵1|2𝑛   
 

     =  |(11)2|4 

 

     =  |3|4 

     = 3 

 

 

 

 

Bits Partitioning Unit (BPU) 

𝑋 

𝐵3 

 

𝐵2 𝐵1 

𝑠1 𝑐1 𝐵 𝐵𝐵 

𝑛 𝑏𝑖𝑡 CSA 

1  

𝐶𝑜𝑛𝑐𝑎𝑛𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛 

𝑛 𝑏𝑖𝑡 𝐶𝑃𝐴 1 

 

𝑛

− 1 𝑏𝑖𝑡 𝐶𝑃𝐴 2 

 

2𝑛 𝑏𝑖𝑡 𝐶𝑃𝐴 3 

 

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 

2𝑛

+ 1 𝑏𝑖𝑡 𝐶𝑃𝐴 4 

 

𝐵𝑖𝑡𝑠 𝑠ℎ𝑖𝑓𝑡 
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From Equation (9),  

 

   𝑥3 = |𝐵 + 𝐵𝐵|2𝑛+1−1       

 

Where, from equation (12) and (13), 

 

𝐵 =  𝐵2,𝑛−1…𝐵2,0⏟        
𝑛

𝐵1,𝑛−1…𝐵1,0⏟        
𝑛⏟                

2𝑛

     

 

    = 0111                                                                           
 

𝐵𝐵 =   𝐵3,1𝐵3,0𝐵3,𝑛…𝐵3,2⏟            
𝑛+1

  

 

      = 010 

 

Therefore, 

 

𝑥3 = |(0111)2 + (010)2|7       

 

     =  |7 +  2|7 

 

     = 2 

 

3.2 Reverse conversion  

 
The front end of any RNS implementation involves forward conversion as elucidated in the immediate section 

above. Similarly, there is the need to perform reverse conversion of an encoded RNS data at the back end in 

order to make meaning out of what was transmitted.  The reverse conversion process enables the legitimacy of a 

transmitted data to be tested, allowing afterwards error detection and correction if the data is in error. The 

reverse conversion process for the moduli set {2𝑛 − 1,   2𝑛, 2𝑛+1 − 1, 22𝑛 − 3,  22𝑛 + 1}, is performed using 

the traditional CRT as in Equation (2). 

 

3.3 Proposed error detection and correction algorithm 

 
The proposed scheme in this work uses the traditional CRT and the concept of Manhattan distance heuristics. 

The reasoning for using the CRT over MRC is that MRC uses mod-𝑚𝑖 for computation in a sequential fashion, 

which limits speed of operations [36]. Taking into consideration the limited battery reserve of sensor nodes, a 

worth choice is the CRT even though admittedly computation using CRT for reverse conversion may involve 

mod-M (which may be large). Importantly, to minimize such impact, the deployment of the reverse conversion 

process will be done at the Base station which is resource unlimited.  

 

For any given moduli set {𝑚𝑖} for 𝑖 = 1,… , 𝑘, the equivalent decimal number 𝑋 can be calculated from the 

residues (𝑥1, 𝑥2, … , 𝑥𝑘) using the CRT as in Equation (2).  

 

Additionally, we employ the concept of heuristics in deciphering error bits and recovering an intended 

transmitted data. Specifically, the Manhattan distance heuristic will be used. A heuristic function ℎ(𝑥) defined 

in equation (14) sums the distance that the vector 𝑥 is far apart from the received vector 𝜏. In other words, it 

measures the goodness of the vector 𝑥. The distance is measured by the sum of the differences in the 𝑥-positions 

and the 𝑦-positions of both vector 𝑥 and vector 𝜏 (the received data). The 𝑦-positions are taken to be 0.  

 

ℎ(𝑥)  = 𝐷𝑀(𝑥, 𝜏)                                                                                                                                               (14) 
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where; 

  

𝐷𝑀(𝑥, 𝜏)  =  ∑𝑎𝑏𝑠(𝑥𝑖 −  𝜏𝑖)

𝑛

𝑖=1

                                                                                                                       (15) 

 

Theorem 1: A code 𝛺 based on a redundant residue number system can correct up to 𝑡 errors; 𝑡  ≤ ⌊𝑟 2⁄ ⌋ where  

⌊∗⌋ is the largest integer less than or equal to ∗ [16]. 

 

Theorem 2: Given the code 𝑅𝑅𝑁𝑆 (𝑛, 𝑘), such that no more than 2𝑡  errors have appeared in the received 

vector 𝜏, the original integer 𝑋 can be restored by iteratively performing Equation (16) to find the one value of 𝑋 

that is legitimate and with the minimum Manhattan distance. 
 

𝑋 = 𝑅𝜏𝑚𝑜𝑑 𝑀𝜏                                                                                                                                                  (16) 
 

where, 𝑅𝜏 is the magnitude of the reduced residue after 2𝑡 possible error residues have been deleted from τ. 

𝑀𝜏 = ∏ 𝑚𝜏𝑗
𝑛−2𝑡
𝜏𝑗=1

, is the magnitude of the corresponding moduli 𝑚𝜏 of residue positions without error. 

 

Proof: 
 

Consider the 𝑅𝑅𝑁𝑆 (𝑛, 𝑘) code such that up to 𝑡 errors can be corrected.  Let an integer 𝑋 in the range [0, 𝑀𝐾) 

have the residue vector =  {𝑥𝑖 , … , 𝑥𝑛}. If 2𝑡 errors are propagated into the vector 𝑥 during transmission then a 

possible erroneous vector 𝜏  received at the destination which differs from 𝑥 at 2𝑡 residues positions is given as; 
 

{𝜏𝑖}𝑖=1,𝑛 = {𝑥𝑖}𝑖=1,𝑛−2𝑡 + {𝑒𝑢𝑖}𝑢𝑖=1,2𝑡
                                                                                                            (17) 

 

In decimal form we can rewrite Equation (17) as; 
 

Ʀ = (𝑋 + 𝐸)𝑚𝑜𝑑𝑀                                                                                                                                       (18𝑎) 
 

Which is equivalent to;  

     

𝑋 = (Ʀ − 𝐸)𝑚𝑜𝑑                                                                                                                                         (18𝑏) 
 

Where 𝑋, Ʀ, and 𝐸 are calculated using Equation (2). 

 

It is clear from Equation (18𝑏) that if an 𝑅𝑅𝑁𝑆 (𝑛, 𝑘)  code is able to detect 2𝑡 residues errors, then, the 

remaining residues and their corresponding moduli should be enough to recover the original integer 𝑋 as long as 

it is not less than 𝑘 =  𝑛 −  𝑟. Which proofs that 𝑋 can be generated from Equation (16). 
 

It is worth noting also that, given that vector {𝜏𝑖}𝑖=1,𝑛 is the super set of {𝑒𝑢𝑖}𝑢𝑖=1,2𝑡
, the proposed algorithm 

generates 𝑛 different combinations of 𝑟𝜏𝑠  from the complement of 𝑒. 
 

Therefore, 
 

{𝑟𝜏𝑖}𝑖=1,𝑛−2𝑡
= {𝑒𝑢𝑖}

′

𝑢𝑖=1,2𝑡
                                                                                                                             (19) 

 

Each 𝑟𝜏 together with their respective 𝑚𝜏′𝑠 are used to generate 𝑛 different 𝑅𝜏 using Equation (2). 

 

Later, it is demonstrated numerically, that there is one and only one legitimate 𝑅𝜏 with the smallest Manhattan 

distance and represents the recovered integer. 
  
The error detection and correction process involves solving Equation (16) iteratively to find the combination of  

𝑅𝜏𝑗  and 𝑀𝜏𝑗  that yields a legitimate 𝑋  and returns the smallest 𝐷𝑀; 𝑗 is one of the combinations of 𝑛 possible 

combinations. The steps involved in the multiple error detection and correction are presented in the algorithm 

below. 
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Algorithm: errorHandlingInWSN 

1. Decode Ʀ from its encoded vector 𝝉 using Equation (2) 

2. IF Ʀ is in the legitimate range, output Ʀ as 𝑿 and 𝐺𝑂𝑇𝑂 𝐸𝑁𝐷  

// Ʀ is the original message without error. 

3. ELSE  

4. SET 𝑹𝝉   =  { }; 𝒋 =  1 

5. WHILE 𝒋 ≤ 𝒏 DO 

COMPUTE 𝑹𝝉𝒋 from Equation (16)  

IF  𝑹𝝉𝒋 is in the legitimate range  

SET 𝑹𝝉 ← 𝐴𝐷𝐷(𝑹𝝉𝒋)  

𝑗 + +; GOTO 5 

6. END WHILE 

7. IF 𝑹𝝉. 𝑙𝑒𝑛𝑔𝑡ℎ() = 1 

8. RETURN 𝑹𝝉𝟏 as 𝑿 and 𝐺𝑂𝑇𝑂 END 

9. ELSE  

10. Calculate the residue vectors 𝑟𝜏𝑗  for each 

 𝑹𝝉𝒋 ∈ 𝑹𝝉 and their 𝑫𝑴(𝑟𝜏𝑖 ,   𝜏)  

11. RETURN 𝑹𝝉𝒋 with the minimum 𝑫𝑴(𝑟𝜏𝑖 ,   𝜏) 

𝑚𝑖𝑛 =  ℎ(𝑟𝜏1) 

𝑊𝐻𝐼𝐿𝐸 𝑗 ≤ 𝑹𝝉. 𝐿𝑒𝑛𝑔𝑡ℎ()  

𝑖𝑓 ℎ (𝑟𝜏𝑗 ,   𝜏)   ≤  𝑚𝑖𝑛 

𝑚𝑖𝑛 = ℎ(𝑟𝜏𝑗)  

𝐸𝑁𝐷 

𝑅𝐸𝑇𝑈𝑅𝑁 𝑹𝝉𝒋 𝑎𝑠 𝑿  

12. RETURN 2𝑡 error (s) found and 𝑡 error (s) corrected. 

13. END 

 

3.4 Numerical Examples  

 
Numerical examples are present for both single error and multiple error detection and correction based on the 

proposed error correction approach in here. 

 

3.4.1 Single error detection and correction 

 

The proposed moduli set {2𝑛 − 1, 2𝑛 , 2𝑛+1 − 1, 22𝑛 − 3, 22𝑛 + 1}  will be considered. This generates a 

𝑅𝑁𝑆 (5, 3) code which from Theorem 1, can detect 2 errors and correct 1 error.  

 

If we consider 𝑛 =  2, then we have the resulting moduli set {3, 4, 7, 13, 17}. The legitimate range is [0, 84); 
while the illegitimate range is [84, 18564).  

 

Let 𝑋 =  23 and the equivalent residue vector 𝑥 = {2, 3, 2, 10, 6}. Assume that a single error (𝑡 =  1) have 

been propagated into 𝑋 during transmission at the 2nd residue position from 3 to 1. Then the erroneous received 

vector 𝜏 = {2, 1, 2, 10, 6}. 

 

Given 𝜏 =  {2, 1, 2, 10, 6}, and the moduli set {3, 4, 7, 13, 17}, the corresponding received decimal value Ʀ is 

computed using Equation (2). 

 

The corresponding values of 𝑀𝑖 and the multiplicative inverse 𝑀𝑖
−1 are computed below; 

 

𝑀𝑖= {6188, 4641, 2652, 1428, 1092}; 𝑖 =  1, … , 𝑛. 
 

𝑀𝑖
−1 = {2, 1, 6, 6, 13}; 𝑖 =  1, … , 𝑛.  
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Thus;  

 

Ʀ = ( 2(6188)(2) +  1(4641)(1) +  2(2652)(6) + 10(1428)(6) + 6(1092)(13))  𝑚𝑜𝑑 18564  

= (24752 + 4641 + 31824 + 85680 + 85176)𝑚𝑜𝑑 18564 

= ( 232073) 𝑚𝑜𝑑 18564 =  9305 

 

Since the calculated value of Ʀ = 9305 is an illegitimate number in the given RRNS code, it can be concluded 

that there is 1 error (in this illustration). In this case, Equation (16) is performed iteratively in 𝑗 ≤ 5 recovery 

trials. All combinations of 𝑛 –  𝑘 (= 2) error residues are generated and the corresponding decimal values (𝑅𝜏𝑗) 

are calculated. Table 1 shows the results. 

 

Table 1. Possible Error positions and corresponding weighted values 

 

Iterations 

(𝒋) 
Possible error 

positions 

Reduced Vectors 𝑹𝝉 

𝒖𝟏 𝒖𝟐 ȓ𝝉𝒋  𝒎𝝉𝒋 𝑴𝝉𝒋 𝑹𝝉𝒋 𝑹𝝉𝒋𝒎𝒐𝒅 𝑴𝝉𝒋 

1 1 2 {2, 10, 6} {7, 13, 17} 1547 10852 23 

2 2 3 {2, 10, 6} {3, 13, 17} 663 8642 23 

3 3 4 {2, 1, 6} {3, 4, 17} 204 1145 125 

4 4 5 {2, 1, 2} {3, 4, 7} 84 149 65 

5 5 1 {1, 2, 10} {4, 7, 13} 364 2753 205 

 

There are two possible results from Table 1 that are within the legitimate range of [0, 84). These are added to the 

set 𝑹𝝉  forming  𝑹𝝉  = {23, 65}. The proposed algorithm breaks the tie by using the concept of Manhattan 

distance heuristic as in Equation (15). Table 2 shows the residues of  

𝑹𝝉1 and  𝑹𝝉2 w.r.t the moduli set {3, 4, 7, 13, 17}, and the Manhattan distances from the received vector 𝜏 =

{2, 1, 2, 10, 6}.  
 

The algorithm returns the integer value of 𝑹𝝉𝑖 (or 𝑟𝝉𝑖)   that has the smallest Manhattan distance from the 

received vector 𝜏. Therefore, the recovered integer is 23 since it has the smallest Manhattan distance value of 2. 

The vector positions of 23 that have non-zero Manhattan distances from those of 𝜏 are in error. Hence, it is clear 

the error residue is at position 2; and the intended transmitted residue at the receiving sink node is; |23|4 = 3. 
 

Table 2. Residue vectors and Manhattan Distances for tie breaking  

 

𝒊 𝑹𝝉𝒊 𝒓𝝉𝒊 𝝉 𝑫𝑴(𝒓𝝉𝒊, 𝝉) 

1 23 {2, 3,2,10,6} {2,1, 2,10,6, } 2 

2 65 {2,1, 2, 0,14} {2,1, 2,10,6, } 18 

 

3.4.2 Multiple error detection and correction 

 

In order to test the error handling algorithm for multiple error detection and correction, the proposed moduli set 

{2𝑛 − 1, 2𝑛, 2𝑛+1 − 1, 22𝑛 − 3, 22𝑛 + 1} together with additional moduli {22𝑛 + 3,  22𝑛 + 7} to increase the 

redundant moduli will be considered. This generates a 𝑅𝑁𝑆 (7, 3) code which from Theorem 1, can detect and 

correct up to 4 and 2 errors respectively.  

 

If we consider 𝑛 =  2, then we have the set {3, 4, 7, 13, 17, 19, 23}. The legitimate range is [0, 84); while the 

illegitimate range is [84, 8112468).  

 

Let 𝑋 =  55 and the equivalent residue vector is 𝑥 = {1, 3, 6, 3, 4, 17, 9}. Assume that two errors (𝑡 =  2) 
have propagated into 𝑋 during transmission at the 3rd and 6th positions respectively. Let the received vector 𝜏 = 

{1, 3, 11, 3, 4, 2, 9}. 
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Given 𝝉 =  {1, 3, 𝟏𝟏, 3, 4, 𝟐, 9}, and the moduli set {3, 4, 7, 13, 17, 19, 23}, the corresponding received decimal 

value Ʀ is computed using Equation (2) as follows. 

 

The corresponding values of 𝑀𝑖 and the multiplicative inverse 𝑀𝑖
−1 are computed below; 

 

𝑀𝑖= {2704156, 2028117, 1158924, 624036, 477204, 426972, 352716}; 𝑖 =  1, 𝑛. 
𝑀𝑖
−1 = {1, 1, 2, 4, 11, 5, 21}; 𝑖 =  1, 𝑛. 

 

Thus;  

 

Ʀ = ( 1(2704156)(1) +  3(2028117)(1) +  11(1158924)(2) + 3(624036)(4) + 4(477204)(11) +
2(426972)(5) + 9(352716)(21))  𝑚𝑜𝑑 8112468  

= (2704156 + 6084351 + 25496328 + 7488432 + 20996976 + 4269720 + 66663324)𝑚𝑜𝑑 8112468 

= ( 133703287) 𝑚𝑜𝑑 8112468 =  3903799 

 

Since the calculated value of Ʀ = 3903799  is an illegitimate number in the given RRNS code, it can be 

concluded that there are errors (at least one). In this case, Equation (16) is performed iteratively in 𝑗 ≤ 7 trials. 

All combinations of 𝑛 –  𝑘 (= 4) error residues are generated and the corresponding decimal values (𝑅𝜏𝑗) are 

calculated. Table 3 shows the results.  

 

There are two possible results from Table 3 that are within the legitimate range of [0, 84). These are added to the 

set 𝑹𝝉 resulting in 𝑹𝝉  = {55, 67}. The proposed algorithm breaks the tie by using the concept of Manhattan 

distance heuristic as in equation (15). Table 4 has the residues of  

𝑹𝝉2 and  𝑹𝝉6 and Manhattan distances from the received vector 𝜏 = {1, 3,4,3,4,2,9}. 

 

Table 3. Possible Error positions and corresponding weighted values 

 

No of 

iterations 

𝑱 

Possible Error 

Positions 

Reduced Vectors 𝑹𝝉 

𝒖𝟏 𝒖𝟐 𝒖𝟑 𝒖𝟒 ȓ𝝉𝒋  𝒎𝝉𝒋 𝑴𝝉𝒋 𝑹𝝉𝒋 𝑹𝝉𝒋𝒎𝒐𝒅 𝑴𝝉𝒋 

1 1 2 3 4 {4, 2, 9} {17,19,23} 7429 2692872 3574 

2 3 4 5 6 {1, 3,9} {3,4,23} 276 2439619 55 

3 5 6 7 1 {3,6,11} {4,7,13} 364 6619239 263 

4 7 1 2 3 {11, 4,2} {13,17,19} 4199 305256 2928 

5 2 3 4 5 {2,9,1} {19,23,3} 1311 624988 952 

6 4 5 6 7 {1,3,6} {3,4,7} 84 1834963 67 

7 6 7 1 2 {6, 11,4} {7,13,17} 1547 5306928 718 

 

Table 4. Residue vectors and Manhattan Distances for tie breaking 

 

𝒊 𝑹𝝉𝒊 𝒓𝝉𝒊 𝝉 𝑫𝑴(𝒓𝝉𝒊 , τ) 

1 55 {1, 3,6,3,4,17,9} {1, 3,4,3,4,2,9} 17 

2 67 {1, 3, 4, 2, 16, 10,21} {1, 3,4,3,4,2,9} 33 

 

The algorithm returns the value of 𝑹𝝉𝑖   that has the smallest Manhattan distance from received vector 𝜏 . 

Therefore, the recovered integer is 55 since it has the smallest Manhattan distance value of 17. The vector 

positions of 55 that have non-zero Manhattan distances from those of 𝜏 are in error. Hence, it is clear the error 

residues are at position 3 and 6; and the intended transmitted residues are derived as; |55|7 = 6  and |55|19 = 17. 
 

Notice from above that the error correction and detection process was achieved in 7 trials (equivalent to the code 

size). But, in the best-case scenario the proposed algorithm could achieve the error correction in lesser than 𝑛 

trials. 
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4 Results and Performance Comparison 

 
The performance of the proposed error detection and correction algorithm is evaluated primarily in terms of 

computational time - number of iterations needed to recovers a message. Compared to exiting schemes 

[21,27,37] and [29], the scheme inhere offers fewest iterations to recover an original transmitted. In the worst-

case scenario, the algorithm in this work requires 𝑛  (the codes length) trials to decode an integer value 

equivalent of a signal that has been transmitted over a sensing network. Table 5, gives a comparative analysis of 

performance of the proposed scheme and recent schemes. 

 

A careful look at Table 5, show the most recent error correction method presented by [21] requires 𝐶𝑡
𝑛 trials to 

detect and correct both single and multiple errors that may be contained in a transmitted data. This is same as the 

works of [16] for single error correction; but better than the schemes presented in [37,29] and [27]. The 

proposed scheme performs better than these schemes with only 𝑛 trials required in the worst-case scenario to 

achieve the function of detecting and correcting multiple errors. Fig. 3 below compares the error handling 

scheme in [21] and the proposed scheme for 𝑟 =  4 and varying 𝑘 . The scheme in [21] presents a single 

hardware implementation for both forward and reverse conversion; while the proposed scheme here provides 

only an architecture for forward conversion. It will be worthwhile to build a combined reverse conversion 

architecture for the moduli set here in order to measure and compare the efficiency of the hardware 

implementations of these divergent approaches to detecting and correcting errors. 

 

 
 

Fig. 3. Comparison of error recovery times for various schemes 

 

Table 5. Performance comparison of error detection and correction schemes 

 

Scheme Integer 

Recovery 

Method 

Iterations Error Type Converter 

Availability 

Worst  

Case 

Single  Multiple  Forward Reverse 

Salifu and Gbolagade [29] MRC 2 × 𝐶𝑡
𝑛 Yes No Yes No 

Karthik, et al. [37] CRT 𝐶𝑘
𝑛 No Yes No No 

Alhassan, et al. [30] CRT 2 × 𝐶𝑡
𝑛 Yes No Yes No 

Agbedemnab, et al. [21] CRT 𝐶𝑡
𝑛 Yes Yes Yes Yes 

Proposed Scheme CRT 𝑛 Yes Yes Yes No 
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5 Conclusion 

 
Reliable data transmission through communication systems such as wireless sensor networks are vital for 

important application-specific decision making regarding human life and properties. In this work a new 

algorithm for single and multiple residue error detection and correction has been proposed. The proposed 

algorithm which uses redundant residue number coding and the Chinese Remainder Theorem stands out 

amongst recent algorithms in terms of the number of trials required to correct errors. A new concept of 

Manhattan distance heuristics is used to recover erroneous digits where there is tie of legitimate received values. 

This heuristic not only makes it easier to recover the erroneous integer but also easier to decode the erroneous 

digit positions much faster. In future, the algorithm will be tested on a routing protocol for WSN to simulate the 

benefits in terms of increased throughput and reduction in energy consumption.  

 

Acknowledgement 

 
The authors acknowledge the valuable contributions and technical assistance of reviewers. 

 

Competing Interests 

 
Authors have declared that no competing interests exist. 

 

References 

 
[1] Pottie G, Kaiser W. Wireless integrated network sensors. Communication of ACM. 2000;43(5):51–58. 

 

[2] Tay T, Chang CH, Low J. Efficient VLSI implementation of 2n scaling of signed integer in RNS (2n−1, 

2n, 2n+1). IEEE Trans. Very Large Scale Integr. Syst. 2013;21:1936–1940.  

 

[3] Jenkins WK, Altman EJ. Self-checking properties of residue number error checkers based on mixed radix 

conversion. IEEE Transactions on Circuits and Systems. 1988;35(2):159–167.  

Available:https://doi.org/10.1109/31.1717  

 

[4] Xiao H, Garg HK, Hu J, Xiao G. New error control algorithms for residue number system codes. ETRI 

Journal. 2016;38(2):326–336.  

Available:https://doi.org/10.4218/etrij.16.0115.0575 

 

[5] Szabo and Tanaka. Residue arithmetic and its application to computer technology. McGraw-Hill Book 

Co.; 1967. 

 

[6] Claudio EDD, Orlandi G, Piazza F. A systolic redundant residue arithmetic error correction circuit. IEEE 

Trans. Comput. 1993;42(4):427–432. 

 

[7] Cheney PW. An investigation of residue number theory for digital systems, Ph. D. dissertation. Stanford 

Univ., Calif; 1962. 

 

[8] Watson RW, Hastings CW. Self-checked Computations using Residue Arithmetic: Proc. of IEEE. 

1966;54(12):1920-1931.  

 

[9] Yau SS, Liu YC. Error correction in RRNS: IEEE trans. Computer. 1973; c-22:5-11. 

 

[10] Mandelbaum DM. Error–correction in Residue Arithmetic, IEEE Trans. Computer. 1972;21(6):538-545.  

 

[11] Barsi F, Maestrini P. Error correcting properties of redundant residue number systems. IEEE Transaction 

on Computers; 1973. 

 

https://doi.org/10.1109/31.1717
https://doi.org/10.4218/etrij.16.0115.0575


 

 
 

 

Nawusu et al.; JAMCS, 36(8): 27-43, 2021; Article no.JAMCS.72725 
 

 

 
42 

 

[12] Tang Y, Boutillon E, Jégo C, Jézéquel M. A new single-error correction scheme based on self-diagnosis 

residue number arithmetic. Design and Architecture for Signal and Image Processing Conf., Edinburgh, 

Scotland. 2010;27(33). 

 

[13] Ramachandran V. Single residue error correction in residue number systems, IEEE Trans. Computers. 

1983;c-32(5):504-507. 

 

[14] Su CC, Lo HY. An algorithm for scaling and single residue error correction in residue number systems. 

IEEE Trans. Comput. 1990;39(8):1053-1064. 

 

[15] Katti RS. A new residue arithmetic error correction scheme. IEEE Trans. Comput. 1966;45(1):13-19. 

 

[16] Goh VT, Siddiqi MU. Multiple error detection and correction based on redundant residue number 

systems. IEEE Trans. Commun. 2000;56(3):325–330. 

 

[17] Krishna H, Sun JD. A coding theory approach to error control in RRNS-part 1: - Theory and single error- 

correction. IEEE Trans. Circuits and Syst. II Analog & DSP. 1992;39:8-17.  

 

[18] Amusa KA, Nwoye EO. Novel Algorithm for Decoding Redundant Residue Number Systems (RRNS) 

Codes; 2012. 

 

[19] Gbolagade KA, Cotofana SD. Generalized matrix method for efficient residue to decimal conversion. 

IEEE Trans. Computer. 2008;1414 –1417. 

 

[20] Yang LL, Hanzo L. Redundant residue number system based error correction codes. Vehicular 

Technology Conference, VTC Fall. 2001;3:1472 -1476.  

 

[21] Agbedemnab PA, Baagyere EY, Daabo MI. Single and multiple error detection and correction using 

redundant residue number system for cryptographic and stenographic schemes. Asian Journal of Research 

in Computer Science. 2019;4(4):1-14. 

 

[22] Roshanzadeh M, Saqaeeyan S. Error detection & correction in wireless sensor networks by using residue 

number systems. International Journal of Computer Network and Information Security. 2012;4(2):2935. 

ISSN: 20749090.  

 DOI: 10.5815/ijcnis. 

 

[23] James J, Ameenudeen P. A novel method for error correction using redundant residue number system in 

digital communication systems. International Conference on Advances in Computing, Communications 

and Informatics (ICACCI); 2015. 

 

[24] Zarei B, Muthukkumarasamy V, Wu XW. Energy efficient channel coding of physiological signals in 

wireless body area networks. International Journal of Computer Applications. 2015;0975 –8887:118(23) 

 

[25] Alhassan AB, Saeed I, Agbedemnab PA. The Huffman's method of secured data encoding and error 

correction using residue number system (RNS). Communication on Applied Electronics (CAE) Journal, 

Foundation of Computer Science (FCS). 2015;2(9).  

 ISSN: 2394-4714. 

 

[26] Alhassan AB, Gbolagade KA, Bankas EK. New Lempel-Ziv-Welch fault tolerant data compression and 

encryption scheme. International Journal of Advanced Studies in Engineering and Scientific Intervention. 

2017a;4(1). 

 

[27] Alhassan AB, Gbolagade KA, Bankas EK. A Novel and efficient LZW-RNS scheme for enhanced 

information compression and security. International Journal of Advanced Research in Computer 

Engineering and Technology. 2017b;4 (11):4015-4019. 

 



 

 
 

 

Nawusu et al.; JAMCS, 36(8): 27-43, 2021; Article no.JAMCS.72725 
 

 

 
43 

 

[28] Olatunde OT, Gbolagade KA, Abolaji Y. Redundant Residue Number System Based Fault Tolerant 

Architecture over Wireless Network; 2013. 

 

[29] Salifu AM, Gbolagade KA. An improved redundant residue number system-based error detection and 

correction scheme for the moduli set. 2016;2(1):1114. 

 

[30] Alhassan AB, Daabo MI, Akobre S. Improved Lempel-Ziv-Welch’s Error Detection and Correction 

Scheme using Redundant Residue Number System (RRNS). Circulation in Computer Science. 2017;2(6): 

25-30. 

 

[31] Bankas E, Gbolagade K. New Efficient FPGA Design of Residue to Binary Converter. International 

Journal of VLSI design & Communication Systems (VLSICS). 2013;4:6. 

 

[32] Gbolagade KA. An Efficient MRC based RNS-to-Binary Converter for the {22n−1,2n,22n+1−1} Moduli 

Set. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET). 

2013;2(4). 

 

[33] Pontarelli S, Cardarilli GC, Re M, Salsano A. A novel error detection and correction technique for RNS 

based FIR filters,’’ IEEE Int. Symp. Defect and Fault Tolerance of VLSI Systems, Boston, MA. 2008; 

436-444. 

 

[34] Omondi A, Premkumar B. Residue number systems: Theory and implementation. Imperial College Press, 

UK; 2007.  

 

[35] Taylor J. Residue arithmetic: A tutorial with examples. Computer. 1984;17(5). 

 

[36] Gbolagade K, Chaves R, Sousa L, Cotofana S. An improved RNS reverse converter for the {22n+1 - 1, 

2n, 2n - I} moduli set. IEEE International Symposium on Circuits and Systems, Paris, France, Pages. 

2010;2103-2106. 

 

[37] Karthik G, Mohan Raj R, Karthik B. RRNS based error detection and correction in CDMA using Chinese 

Remainder Theorem. 2016;2(2):338341. 

_______________________________________________________________________________________ 
© 2021 Nawusu et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited. 

 

 

 Peer-review history: 

The peer review history for this paper can be accessed here (Please copy paste the total link in your 

browser address bar) 

https://www.sdiarticle4.com/review-history/72725 

http://creativecommons.org/licenses/by/3.0

